A054888 Layer counting sequence for hyperbolic tessellation by regular pentagons of angle Pi/2.
1, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..999 (indices corrected to start at zero by _Sidney Cadot_, Jan 07 2022)
- Paolo Dominici, Illustration
- Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - _N. J. A. Sloane_, Nov 20 2022]
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
Programs
-
Haskell
a054888 n = a054888_list !! (n-1) a054888_list = 1 : zipWith (+) (tail a002878_list) a002878_list -- Reinhard Zumkeller, Jan 11 2012
-
Magma
[n eq 0 select 1 else 5*Fibonacci(2*n): n in [0..40]]; // G. C. Greubel, Feb 08 2023
-
Mathematica
LinearRecurrence[{3,-1},{1,5,15},30] (* Harvey P. Dale, Jan 15 2023 *) Join[{1}, 5*Fibonacci[2*Range[40]]] (* G. C. Greubel, Feb 08 2023 *)
-
PARI
{a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^2*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna, Feb 21 2012 */
-
SageMath
[5*fibonacci(2*n) + int(n==0) for n in range (41)] # G. C. Greubel, Feb 08 2023
Formula
a(n) = 5*A001906(n) + [n=0].
G.f.: (1+x)^2/(1-3*x+x^2).
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^2 * x^n/n ). - Paul D. Hanna, Feb 21 2012
a(n) = 5*A000045(2*n) for n >= 1. - Robert Israel, Jun 01 2015
Extensions
Offset changed to 0 by N. J. A. Sloane, Jan 03 2022 at the suggestion of Michel Marcus
Comments