cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054888 Layer counting sequence for hyperbolic tessellation by regular pentagons of angle Pi/2.

Original entry on oeis.org

1, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections.

Crossrefs

Programs

  • Haskell
    a054888 n = a054888_list !! (n-1)
    a054888_list = 1 : zipWith (+) (tail a002878_list) a002878_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [n eq 0 select 1 else 5*Fibonacci(2*n): n in [0..40]]; // G. C. Greubel, Feb 08 2023
    
  • Mathematica
    LinearRecurrence[{3,-1},{1,5,15},30] (* Harvey P. Dale, Jan 15 2023 *)
    Join[{1}, 5*Fibonacci[2*Range[40]]] (* G. C. Greubel, Feb 08 2023 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^2*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna, Feb 21 2012 */
    
  • SageMath
    [5*fibonacci(2*n) + int(n==0) for n in range (41)] # G. C. Greubel, Feb 08 2023

Formula

a(n) = 5*A001906(n) + [n=0].
G.f.: (1+x)^2/(1-3*x+x^2).
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^2 * x^n/n ). - Paul D. Hanna, Feb 21 2012
a(n) = A001906(n-1) + 2*A001906(n) + A001906(n+1). - R. J. Mathar, Nov 28 2011
a(n) = A203976(A004277(n-1)). - Reinhard Zumkeller, Jan 11 2012
a(n) = 5*A000045(2*n) for n >= 1. - Robert Israel, Jun 01 2015
a(n) = A002878(n-1)+A002878(n). - R. J. Mathar, Jul 09 2024

Extensions

Offset changed to 0 by N. J. A. Sloane, Jan 03 2022 at the suggestion of Michel Marcus