cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054894 a(n+1) = 4*a(n) + 4*a(n-1) - 4*a(n-2) - a(n-3) with a(1)=1, a(2)=2, a(3)=11, a(4)=48.

Original entry on oeis.org

1, 2, 11, 48, 227, 1054, 4921, 22944, 107017, 499106, 2327795, 10856592, 50634107, 236152510, 1101392305, 5136786240, 23957470033, 111735303362, 521122556315, 2430464772336, 11335450631123, 52867436085214, 246568565219689, 1149971737922784, 5363356017597913, 25014169325118818
Offset: 1

Views

Author

Barry Cipra, Jul 04 2000

Keywords

Crossrefs

Column 3 of A332862 (apart from the initial term 1 here).

Programs

  • GAP
    a:=[1,2,11,48];; for n in [5..40] do a[n]:=4*(a[n-1]+a[n-2]-a[n-3]) -a[n-4]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-2*x-x^2)/(1-4*x-4*x^2+4*x^3+x^4) )); // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(coeff(series(x^4/((1+2*x)*(2*x^3+x^2-2*x+1)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Dec 29 2019
  • Mathematica
    CoefficientList[Series[(1-2*x-x^2)/(1-4*x-4*x^2+4*x^3+x^4), {x, 0, 40}], x] (* Vincenzo Librandi, May 05 2013 *)
    LinearRecurrence[{4,4,-4,-1},{1,2,11,48},40] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    my(x='x+O('x^66)); Vec(x*(1-2*x-x^2)/(1-4*x-4*x^2+4*x^3+x^4)) \\ Joerg Arndt, May 06 2013
    
  • Sage
    def A054894_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-2*x-x^2)/(1-4*x-4*x^2+4*x^3+x^4) ).list()
    a=A054894_list(40); a[1:] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = Sum_{k=1..n} Fibonacci(k)^3*a(n-k), with a(0)=1. - Vladeta Jovovic, Apr 23 2003
G.f.: x*(1-2*x-x^2)/(1-4*x-4*x^2+4*x^3+x^4). - Vaclav Kotesovec, Nov 27 2012