A054992 Number of prime factors of 2^n + 1 (counted with multiplicity).
1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
Offset: 1
Keywords
Examples
a(3) = 2 because 2^3 + 1 = 9 = 3*3.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1128
- S. S. Wagstaff, Jr., The Cunningham Project
Crossrefs
bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A000051, A002586, A002587, A003260, A001222, A001269, A001348, A054988, A054989, A054990, A054991, A000978.
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).
Programs
-
Mathematica
a[n_] := Module[{x=FactorInteger[2^n+1]}, Sum[x[[i]][[2]], {i, Length[x]}]] A054992[n_Integer] := PrimeOmega[2^n + 1]; Table[A054992[n], {n,103}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
-
PARI
a(n)=bigomega(2^n+1) \\ Charles R Greathouse IV, Apr 29 2015
Formula
Extensions
Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1128) in b-file from Max Alekseyev, Jul 15 2023, Mar 15 2025
Comments