cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A046051 Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
Offset: 1

Views

Author

Keywords

Comments

Length of row n of A001265.

Examples

			a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From _Gus Wiseman_, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
        1: {}
        3: {2}
        7: {4}
       15: {2,3}
       31: {11}
       63: {2,2,4}
      127: {31}
      255: {2,3,7}
      511: {4,21}
     1023: {2,5,11}
     2047: {9,24}
     4095: {2,2,3,4,6}
     8191: {1028}
    16383: {2,14,31}
    32767: {4,11,36}
    65535: {2,3,7,55}
   131071: {12251}
   262143: {2,2,2,4,8,21}
   524287: {43390}
  1048575: {2,3,3,5,11,13}
(End)
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
    a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n,200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013

Formula

Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019

A046798 Number of divisors of 2^n + 1.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 4, 4, 2, 8, 6, 4, 4, 4, 8, 12, 2, 4, 16, 4, 4, 12, 8, 4, 8, 16, 16, 20, 4, 8, 48, 4, 4, 24, 16, 32, 16, 8, 16, 12, 4, 8, 64, 4, 8, 64, 32, 8, 8, 8, 64, 48, 8, 8, 64, 48, 8, 24, 8, 16, 16, 4, 32, 64, 4, 64, 64, 8, 12, 24, 96, 8, 32, 8, 32, 96, 16, 64, 768, 4, 8, 192, 32, 64
Offset: 0

Views

Author

Keywords

Comments

a(n) is odd iff n = 3, as a consequence of the Catalan-Mihăilescu theorem. - Bernard Schott, Oct 05 2021

Examples

			a(7)=4, because 2^7 + 1 = 129 has 4 divisors.
		

Crossrefs

Programs

Formula

a(n) = A000005(A000051(n)). - Michel Marcus, Mar 18 2017

A057934 Number of prime factors of 10^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 3, 2, 2, 2, 2, 2, 5, 3, 5, 3, 3, 4, 7, 5, 4, 3, 2, 4, 8, 4, 5, 3, 5, 3, 7, 4, 3, 7, 2, 4, 9, 4, 5, 6, 4, 3, 10, 4, 3, 7, 4, 4, 12, 4, 4, 9, 4, 7, 8, 4, 2, 6, 10, 5, 6, 5, 4, 6, 3, 3, 12, 3, 6, 8, 2, 4, 10, 11, 3, 5, 4, 7, 11, 6, 12, 7, 4, 9, 11, 3, 7, 8, 8, 3, 8, 4, 4, 11, 6, 4, 8, 4, 6, 8, 4, 5, 13
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Comments

2^(a(2n)-1)-1 predicts the number of pair-solutions of even length L for AB = A^2 + B^2. For instance, with length 18 we have 10^18 + 1 = 101*9901*999999000001 or 3 divisors F which when put into the Mersenne formula 2^(F-1)-1 yields 3 pairs (see reference 'Puzzle 104' for details).

Crossrefs

bigomega(b^n+1): this sequence (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057951(2n) - A057951(n). - T. D. Noe, Jun 19 2003

A057957 Number of prime factors of 4^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 4, 6, 6, 4, 7, 3, 6, 7, 5, 3, 10, 3, 8, 8, 7, 4, 10, 7, 7, 9, 8, 6, 13, 3, 7, 9, 7, 9, 14, 5, 7, 8, 10, 5, 14, 5, 10, 13, 9, 6, 13, 5, 14, 11, 10, 6, 15, 12, 11, 9, 9, 6, 17, 3, 8, 14, 9, 9, 15, 5, 11, 9, 16, 6, 19, 6, 10, 14, 11, 10, 18, 5, 13, 16, 10, 8, 19, 7, 10, 11
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), this sequence (b=4), A057958 (b=3), A046051 (b=2).

Programs

  • Mathematica
    PrimeOmega/@(4^Range[90]-1) (* Harvey P. Dale, Dec 31 2018 *)

Formula

Mobius transform of A085029. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024036(n)) = A046051(2*n). - Amiram Eldar, Feb 01 2020

A057935 Number of prime factors of 9^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 4, 2, 4, 3, 4, 6, 4, 4, 6, 2, 4, 4, 4, 5, 7, 5, 4, 4, 8, 4, 5, 6, 4, 7, 5, 2, 6, 5, 9, 8, 5, 6, 7, 5, 5, 10, 7, 6, 9, 4, 4, 6, 9, 6, 8, 7, 6, 9, 8, 9, 9, 5, 3, 11, 6, 4, 11, 6, 8, 9, 9, 8, 6, 9, 5, 6, 6, 6, 13, 4, 8, 7, 5, 4, 7, 6, 5, 11, 8, 5, 8, 7, 4, 11, 7, 9, 9, 5, 9, 7, 5, 6, 10, 7, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), this sequence (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(9^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[9^n + 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

a(n) = A057952(2n) - A057952(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062396(n)) = A057941(2*n). - Amiram Eldar, Feb 02 2020

A057941 Number of prime factors of 3^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 2, 5, 4, 4, 3, 7, 4, 3, 6, 5, 4, 7, 4, 5, 6, 4, 2, 7, 4, 5, 4, 5, 4, 8, 5, 4, 7, 3, 5, 10, 4, 5, 4, 5, 8, 9, 4, 4, 5, 7, 6, 8, 4, 4, 7, 4, 5, 13, 2, 5, 6, 4, 5, 9, 9, 7, 8, 4, 5, 12, 6, 6, 7, 5, 5, 12, 5, 6, 10, 9, 7, 11, 6, 5, 9, 8, 4, 9, 4, 8, 6, 5, 9, 14, 6, 4
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), this sequence (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057958(2n) - A057958(n) - T. D. Noe, Jun 19 2003
a(n) = A001222(A034472(n)). - Amiram Eldar, Feb 01 2020

A057936 Number of prime factors of 8^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 4, 4, 4, 3, 6, 6, 5, 4, 4, 6, 7, 3, 6, 6, 5, 4, 7, 6, 5, 5, 7, 10, 10, 5, 5, 11, 5, 3, 9, 9, 11, 6, 7, 8, 7, 6, 7, 10, 6, 7, 12, 8, 7, 7, 7, 14, 11, 5, 6, 10, 12, 8, 9, 8, 8, 8, 4, 9, 13, 4, 11, 12, 8, 9, 8, 15, 8, 8, 6, 10, 12, 8, 12, 17, 6, 7, 15, 10, 9, 12, 12, 10, 11, 8, 8, 18, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), this sequence (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(8^n + 1):n in [1..110]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[8^Range[100]+1] (* Harvey P. Dale, Dec 16 2014 *)

Formula

a(n) = A057953(2n) - A057953(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062395(n)) = A054992(3*n). - Amiram Eldar, Feb 02 2020

A057937 Number of prime factors of 7^n + 1 (counted with multiplicity).

Original entry on oeis.org

3, 3, 4, 2, 5, 5, 5, 3, 5, 6, 5, 5, 5, 4, 7, 3, 4, 6, 5, 4, 8, 6, 4, 4, 6, 5, 6, 6, 4, 10, 6, 4, 8, 6, 11, 8, 5, 4, 9, 6, 7, 7, 10, 5, 12, 7, 4, 6, 12, 11, 8, 5, 7, 9, 13, 8, 9, 7, 7, 9, 4, 6, 14, 4, 9, 12, 6, 5, 8, 10, 5, 9, 6, 4, 11, 7, 12, 10, 7, 6, 10, 6, 5, 12, 8, 6, 8, 5, 8, 14, 11, 6, 9, 6, 11
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), this sequence (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(7^n + 1):n in [1..110]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[7^n + 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

a(n) = A057954(2n) - A057954(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A034491(n)). - Amiram Eldar, Feb 02 2020

A057939 Number of prime factors of 5^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 3, 3, 4, 3, 6, 4, 5, 3, 4, 3, 7, 3, 4, 5, 5, 4, 10, 4, 4, 4, 5, 5, 10, 3, 4, 7, 5, 4, 9, 6, 7, 6, 5, 4, 8, 5, 6, 6, 6, 3, 10, 3, 5, 5, 7, 7, 10, 5, 5, 6, 7, 7, 9, 3, 6, 6, 6, 4, 16, 4, 8, 7, 3, 7, 9, 7, 5, 6, 5, 5, 13, 5, 9, 10, 6, 6, 14, 6, 5, 7, 9, 5, 9, 7, 5, 12, 8, 4, 10, 6, 9, 7, 7, 7, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), this sequence (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Mathematica
    PrimeOmega[5^Range[100]+1] (* Harvey P. Dale, Nov 27 2013 *)

Formula

a(n) = A057956(2n) - A057956(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A034474(n)). - Amiram Eldar, Feb 01 2020

A057940 Number of prime factors of 4^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 3, 5, 3, 7, 3, 6, 3, 3, 4, 5, 2, 6, 4, 7, 5, 5, 4, 10, 3, 5, 5, 5, 4, 11, 2, 4, 3, 6, 6, 9, 2, 4, 6, 7, 5, 8, 3, 7, 6, 6, 4, 10, 2, 10, 7, 6, 4, 8, 4, 6, 7, 5, 2, 14, 4, 9, 5, 4, 4, 10, 4, 6, 8, 11, 4, 8, 3, 4, 8, 11, 4, 9, 5, 10, 4, 9, 8, 12, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), this sequence (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057957(2n) - A057957(n). - T. D. Noe, Jun 19 2003
a(n) = Omega(4^n + 1) = A001222(A052539(n)). - Wesley Ivan Hurt, Jan 28 2014
a(n) = A054992(2*n). - Amiram Eldar, Feb 01 2020
Showing 1-10 of 28 results. Next