cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055034 a(1) = 1, a(n) = phi(2*n)/2 for n > 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 4, 6, 6, 4, 8, 8, 6, 9, 8, 6, 10, 11, 8, 10, 12, 9, 12, 14, 8, 15, 16, 10, 16, 12, 12, 18, 18, 12, 16, 20, 12, 21, 20, 12, 22, 23, 16, 21, 20, 16, 24, 26, 18, 20, 24, 18, 28, 29, 16, 30, 30, 18, 32, 24, 20, 33, 32, 22, 24, 35, 24, 36, 36, 20, 36, 30
Offset: 1

Views

Author

Shawn Cokus (Cokus(AT)math.washington.edu)

Keywords

Comments

For n > 1, gives number of times n appears in A094192. - Lekraj Beedassy, Jun 04 2004
Number of positive integers less than n that are relatively prime to n, and have opposite parity to n, for n >= 2. a(1) = 1. - Anne M. Donovan (anned3005(AT)aol.com), Jul 18 2005 [rewritten by Wolfdieter Lang, Apr 08 2020]
Degree of minimal polynomial of cos(Pi/n) over the rationals. For the minimal polynomials of 2*cos(Pi/n), n >= 1, see A187360. - Wolfdieter Lang, Jul 19 2011
a(n) is, for n >= 2, the number of (positive) odd numbers 2*k+1 < n satisfying gcd(2*k+1,n)=1. See the formula for the zeros of the minimal polynomials A187360. E.g., n=10: 1,3,7,9, hence a(10)=4. - Wolfdieter Lang, Aug 17 2011
a(n) is, for n >= 2, the number of nonzero entries in row n of the triangle A222946. See the Beedassy and Donovan comment. - Wolfdieter Lang, Mar 24 2013
Number of partitions of 2n into exactly two relatively prime parts. - Wesley Ivan Hurt, Dec 22 2013
For n > 1, a(n) is the number of pairs of complex embeddings of the (2n)-th cyclotomic field Q(zeta_(2n)) (there are no real embeddings). Note that Q(zeta_n) = Q(zeta_(2n)) for odd n. By Dirichlet's unit theorem, the group of units of Z[zeta_(2n)] is isomorphic to C_(2n) X Z^{a(n)-1}, where C_(2n) is the group of all (2n)-th roots of unity. - Jianing Song, May 17 2021
For n > 1, a(n) is the number of primitive Pythagorean triples (f,g,h) for which there exist positive integers n and k such that f = 2*n*k, g = n^2 - k^2, h = n^2 + k^2. Let U = {1,2,...,2*n-1}, V = {v element of U: v mod 2 = 0}, W = {w element of U\V: gcd(w,2*n) != 1} and X = {1,2,...,n-1}, Y = {y element of X: n == y (mod 2)}, Z = {z element of X\Y: gcd(z,n) != 1}. Then phi(2*n) = |U| - (|V| + |W|) = 2*n - 1 - (2*|Y| + 2*|Z| + 1) = 2*n - 2 - 2*|Y| - 2*|Z| and phi(2*n)/2 = n - 1 - |Y| - |Z|. This is equivalent to the number of primitive Pythagorean triples (f,g,h), where from n-1 pairs (n,k) the ones with n == k (mod 2) or gcd(n,k) != 1 have to be subtracted. - Felix Huber, Apr 17 2023

Examples

			a(10) = 4 since the primitive Pythagorean triples generated by Euclid's formula (n, k) -> [2*n*k, n^2 - k^2, n^2 + k^2] are: (10, 1) -> [20, 99, 101]; (10, 3) -> [60, 91, 109]; (10, 7) -> [140, 51, 149]; (10, 9) -> [180, 19, 181]. - _Peter Luschny_, Apr 16 2023
		

Crossrefs

Programs

  • Maple
    with(numtheory); A055034:=n->ceil(phi(2*n)/2);
    seq(A055034(k), k=1..100); # Wesley Ivan Hurt, Oct 24 2013
    a := n -> if n = 1 then 1 else iquo(NumberTheory:-Totient(2*n), 2) fi:
    seq(a(k), k = 1..100); # Peter Luschny, Apr 16 2023
  • Mathematica
    Join[{1}, EulerPhi[2*Range[2,100]]/2] (* Harvey P. Dale, Aug 12 2011 *)
  • PARI
    a(n)=ceil(eulerphi(2*n)/2) \\ Charles R Greathouse IV, Feb 21 2013
    
  • Python
    from sympy import totient
    def A055034(n): return totient(n<<1)>>1 if n>1 else 1 # Chai Wah Wu, Nov 24 2023

Formula

a(n) = ceiling( phi(2n)/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = Sum_{i=1..n} floor(1 / gcd(2n-i, i)). - Wesley Ivan Hurt, Dec 22 2013
G.f.: (x + Sum_{n>=1} mu(2n-1) * x^(2n-1) / (1-x^(2n-1))^2) / 2 . - Mamuka Jibladze, Dec 14 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2/Pi^2 = 0.202642... (A185197). - Amiram Eldar, Feb 11 2023

Extensions

Better description from Benoit Cloitre, Feb 01 2002
Edited by Ray Chandler, Jul 20 2005