cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055086 n appears 1+[n/2] times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Michael Somos, Jun 13 2000

Keywords

Comments

The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= floor(n/2)) by rows from left to right: n -> T(t1(n), t2(n)).
a(n) gives the number of distinct positive values taken by [n/k]. E.g., a(5)=3: [5/{1,2,3,4,5}]={5,2,1,1,1}. - Marc LeBrun, May 17 2001
This sequence gives the elements in increasing order of the set {i+2j} where i>=0, j>=0. - Benoit Cloitre, Sep 22 2012

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[n,{Floor[n/2]+1}],{n,0,20}]] (* Harvey P. Dale, Mar 07 2014 *)
  • PARI
    {a(n) = floor(sqrt(4*n + 1)) - 1}
    
  • PARI
    t1(n)=floor(sqrt(1+4*n)-1) /* A055086 */
    
  • PARI
    t2(n)=(1+4*n-sqr(floor(sqrt(1+4*n))))\4 /* A055087 */
    
  • PARI
    a(n)=if(n<1,0,a(n-1-a(n-1)\2)+1) \\ Benoit Cloitre, May 09 2017
    
  • Python
    from math import isqrt
    def A055086(n): return isqrt((n<<2)|1)-1 # Chai Wah Wu, Nov 23 2024

Formula

a(n) = [sqrt(4*n + 1)] - 1 = A000267(n) - 1.
a(n) = Sum_{k=1..n} A063524(A075993(n, k)), for n>0. - Reinhard Zumkeller, Apr 06 2006
a(n) = ceiling(2*sqrt(n+1)) - 2. - Mircea Merca, Feb 05 2012
a(0) = 0, then for n>=1 a(n) = 1 + a(n-1-floor(a(n-1)/2)). - Benoit Cloitre, May 08 2017
a(n) = floor(b) + floor(n/(floor(b)+1)) where b = (sqrt(4*n+1)-1)/2. - Randell G Heyman, May 08 2019
Sum_{k>=1} (-1)^(k+1)/a(k) = Pi/8 + 3*log(2)/4. - Amiram Eldar, Jan 26 2024