A055086 n appears 1+[n/2] times.
0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Randell Heyman, Cardinality of a floor function set, arXiv:1905.00533 [math.NT], 2019.
- Michael Somos, Sequences used for indexing triangular or square arrays, 2003.
Programs
-
Mathematica
Flatten[Table[Table[n,{Floor[n/2]+1}],{n,0,20}]] (* Harvey P. Dale, Mar 07 2014 *)
-
PARI
{a(n) = floor(sqrt(4*n + 1)) - 1}
-
PARI
t1(n)=floor(sqrt(1+4*n)-1) /* A055086 */
-
PARI
t2(n)=(1+4*n-sqr(floor(sqrt(1+4*n))))\4 /* A055087 */
-
PARI
a(n)=if(n<1,0,a(n-1-a(n-1)\2)+1) \\ Benoit Cloitre, May 09 2017
-
Python
from math import isqrt def A055086(n): return isqrt((n<<2)|1)-1 # Chai Wah Wu, Nov 23 2024
Formula
a(n) = [sqrt(4*n + 1)] - 1 = A000267(n) - 1.
a(n) = ceiling(2*sqrt(n+1)) - 2. - Mircea Merca, Feb 05 2012
a(0) = 0, then for n>=1 a(n) = 1 + a(n-1-floor(a(n-1)/2)). - Benoit Cloitre, May 08 2017
a(n) = floor(b) + floor(n/(floor(b)+1)) where b = (sqrt(4*n+1)-1)/2. - Randell G Heyman, May 08 2019
Sum_{k>=1} (-1)^(k+1)/a(k) = Pi/8 + 3*log(2)/4. - Amiram Eldar, Jan 26 2024
Comments