cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055210 Sum of totients of square divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 3, 1, 1, 1, 11, 1, 7, 1, 3, 1, 1, 1, 3, 21, 1, 7, 3, 1, 1, 1, 11, 1, 1, 1, 21, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 11, 43, 21, 1, 3, 1, 7, 1, 3, 1, 1, 1, 3, 1, 1, 7, 43, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 21, 3, 1, 1, 1, 11, 61, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 11, 1
Offset: 1

Views

Author

Labos Elemer, Jun 19 2000

Keywords

Examples

			n = 400: its square divisors are {1, 4, 16, 25, 100, 400}, their totients are {1, 2, 8, 20, 40, 160} and the totient-sum over these divisors is, so a(400) = 231. This value arises at special squarefree multiples of 400 (400 times 2, 3, 5, 6, 7, 10, 11, 13, 15, 17, 19, 21, 22, 23 etc).
a(400) = a(2^4*5^2) = (2^5 + 1)/3*(5^3 + 1)/6 = 231.
		

Crossrefs

Programs

  • Magma
    [&+[EulerPhi(d):d in Divisors(n)| IsSquare(d)]: n in [1..100]]; // Marius A. Burtea, Oct 14 2019
  • Mathematica
    Array[DivisorSum[#, EulerPhi, IntegerQ@ Sqrt@ # &] &, 97] (* Michael De Vlieger, Nov 18 2017 *)
    f[p_, e_] := If[EvenQ[e], (p^(e + 1) + 1)/(p + 1), (p^e + 1)/(p + 1)]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*issquare(d)); \\ Michel Marcus, Dec 31 2013
    

Formula

a(n) = Sum_{d is square and divides n} phi(d).
Multiplicative with a(p^e) = (p^(e+1)+1)/(p+1) for even e and a(p^e) = (p^e+1)/(p+1) for odd e. - Vladeta Jovovic, Dec 01 2001
a(n) = Sum_{d|n} A010052(d)*A000010(d). - Antti Karttunen, Nov 18 2017
Conjecture: a(n) = sigma_2(n/core(n))/sigma_1(n/core(n)) = A001157(A008833(n))/A000203(A008833(n)) for all n > 0. - Velin Yanev, Oct 13 2019
G.f.: Sum_{k>=1} k * phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 20 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(2)) = 0.529377... . - Amiram Eldar, Nov 13 2022