cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055232 Expansion of (1+2*x+3*x^2)/((1-x)^3*(1-x^2)).

Original entry on oeis.org

1, 5, 16, 36, 69, 117, 184, 272, 385, 525, 696, 900, 1141, 1421, 1744, 2112, 2529, 2997, 3520, 4100, 4741, 5445, 6216, 7056, 7969, 8957, 10024, 11172, 12405, 13725, 15136, 16640, 18241, 19941, 21744, 23652, 25669, 27797, 30040, 32400, 34881, 37485, 40216, 43076
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2000

Keywords

Comments

a(n) is the number of (w,x,y) having all terms in {0..n} and w <= floor((x+y)/2). - Clark Kimberling, Jun 02 2012
First differences are in A212959. - Wesley Ivan Hurt, Apr 16 2016

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.28(c), y_3.

Crossrefs

Cf. A212959.

Programs

  • Magma
    [(7+(-1)^n+16*n+14*n^2+4*n^3)/8 : n in [0..100]]; // Wesley Ivan Hurt, Apr 15 2016
    
  • Maple
    A055232:=n->(7+(-1)^n+16*n+14*n^2+4*n^3)/8: seq(A055232(n), n=0..100); # Wesley Ivan Hurt, Apr 15 2016
  • Mathematica
    Table[(7 + (-1)^n + 16*n + 14*n^2 + 4*n^3)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Apr 15 2016 *)
    LinearRecurrence[{3,-2,-2,3,-1},{1,5,16,36,69},40] (* Harvey P. Dale, Oct 25 2020 *)
  • PARI
    lista(nn) = for(n=0, nn, print1((7+(-1)^n+16*n+14*n^2+4*n^3)/8, ", ")); \\ Altug Alkan, Apr 16 2016

Formula

G.f.: (1+2*x+3*x^2)/((1-x)^3*(1-x^2)).
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Clark Kimberling, Jun 02 2012
a(n) = (7+(-1)^n+16*n+14*n^2+4*n^3)/8. - Eric W. Weisstein, Apr 04 2013
a(n) = ((n+1)^3 + ceiling((n+1)/2)^2 + floor((n+1)/2)^2)/2. - Wesley Ivan Hurt, Apr 15 2016
E.g.f.: ((7 + 34*x + 26*x^2 + 4*x^3)*exp(x) + exp(-x))/8. - Ilya Gutkovskiy, Apr 16 2016