cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.

Original entry on oeis.org

1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0

Views

Author

Clark Kimberling, Jun 01 2012

Keywords

Comments

In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014

Examples

			a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 50]]   (* A212959 *)
  • PARI
    a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021

A211790 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k

Original entry on oeis.org

1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

...
Let R be the array in A211790 and let R' be the array in A211793. Then R(k,n) + R'(k,n) = 3^(n-1). Moreover, (row k of R) =(row k of A211796) for k>2, by Fermat's last theorem; likewise, (row k of R')=(row k of A211799) for k>2.
...
Generalizations: Suppose that b,c,d are nonzero integers, and let U(k,n) be the number of ordered triples (w,x,y) with all terms in {1,...,n} and b*w*k c*x^k+d*y^k, where the relation is one of these: <, >=, <=, >. What additional assumptions force the limiting row sequence to be essentially one of these: A002412, A000330, A016061, A174723, A051925?
In the following guide to related arrays and sequences, U(k,n) denotes the number of (w,x,y) as described in the preceding paragraph:
first 3 rows limiting row sequence

Examples

			Northwest corner:
  1, 7, 23, 54, 105, 181, 287, 428, 609
  1, 7, 22, 51,  97, 166, 263, 391, 554
  1, 7, 22, 50,  96, 163, 255, 378, 534
  1, 7, 22, 50,  95, 161, 253, 374, 528
  1, 7, 22, 50,  95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A004068 *)
    Table[t[2, n], {n, 1, z}]  (* A211635 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
    Table[n (n + 1) (4 n - 1)/6,
      {n, 1, z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.

A194615 T(n,k) = Half the number of lower triangles of an (n+1) X (n+1) 0..k array with no element equal to the average of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 5, 5, 16, 96, 47, 36, 775, 4322, 849, 69, 3638, 132214, 571364, 29241, 117, 12438, 1674043, 86867366, 205801866, 1901849, 184, 34247, 12561823, 3703163910, 214726600125, 202803700252, 234932757, 272, 82057, 66369488, 73569838704
Offset: 1

Views

Author

R. H. Hardin, Aug 30 2011

Keywords

Comments

Table starts
.................1.......................5........................16
.................5......................96.......................775
................47....................4322....................132214
...............849..................571364..................86867366
.............29241...............205801866..............214726600125
...........1901849............202803700252..........1988649454264015
.........234932757.........547917448108462......69098146174647014753
.......55047807551.....4059864930297777162.9010212831798851496619501
....24470603864937.82468548660331834255159
.20637055514911557

Examples

			Some solutions for 4X4
..2........0........0........2........2........0........0........0
..0.0......1.1......2.0......1.1......0.0......2.0......1.0......1.2
..0.1.0....0.0.2....1.2.2....2.0.0....1.1.1....2.2.0....0.0.1....2.1.1
..2.2.1.0..2.2.2.0..2.1.0.2..1.2.2.1..1.0.2.1..1.2.2.0..1.0.1.0..1.1.0.2
		

Crossrefs

Column 1 is A140422(n+1).
Row 1 is A055232(n+1).

A182260 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w

Original entry on oeis.org

0, 3, 11, 28, 56, 99, 159, 240, 344, 475, 635, 828, 1056, 1323, 1631, 1984, 2384, 2835, 3339, 3900, 4520, 5203, 5951, 6768, 7656, 8619, 9659, 10780, 11984, 13275, 14655, 16128, 17696, 19363, 21131, 23004, 24984, 27075, 29279, 31600, 34040
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Also the number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w>x+y.
A182260(n)+A055232(n)=3^(n-1).
A182260 is row 1 of A211802 and also row 1 of A182259; see A211790 for a discussion and guide to related sequences.

Examples

			For n=2, the 3 triples (w,x,y) for which 2w<x+y are (1,1,2), (1,2,1), (1,2,2).  The 3 triples for which 2w>x+y are (2,1,1), (2,1,2), (2,2,1).
		

Crossrefs

Programs

  • Mathematica
    (See the program at A211802.)
    LinearRecurrence[{3,-2,-2,3,-1},{0,3,11,28,56},50] (* Harvey P. Dale, Aug 10 2019 *)

Formula

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
From Colin Barker, May 06 2012: (Start)
a(n) = (-1+(-1)^n-2*n^2+4*n^3)/8.
G.f.: x^2*(3 + 2*x + x^2)/((1 - x)^4*(1 + x)). (End)

A211805 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k>=x^k+y

Original entry on oeis.org

1, 5, 1, 16, 5, 1, 36, 14, 5, 1, 69, 32, 14, 5, 1, 117, 61, 30, 14, 5, 1, 184, 103, 57, 30, 14, 5, 1, 272, 162, 99, 55, 30, 14, 5, 1, 385, 240, 156, 91, 55, 30, 14, 5, 1, 525, 341, 230, 146, 91, 55, 30, 14, 5, 1, 696, 465, 323, 220, 140, 91, 55, 30, 14, 5, 1, 900
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 1: A055232
Row 2: A211803
Row 3: A211804
Limiting row sequence: A000330
Let R be the array in A211802 and let R' be the array in A211805. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
1...5...16...36...69...117...184
1...5...14...32...61...103...162
1...5...14...30...57...99....156
1...5...14...30...55...91....146
1...5...14...30...55...91....140
		

Crossrefs

Cf. A211790.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[2 w^k >= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A055232 *)
    Table[t[2, n], {n, 1, z}]  (* A211803 *)
    Table[t[3, n], {n, 1, z}]  (* A211804 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12},
                   {k, 1, n}]] (* A211805 *)
    Table[k (k + 1) (2 k + 1)/6,
        {k, 1, z}] (* row-limit sequence, A000330 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211808 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y

Original entry on oeis.org

1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 22 2012

Keywords

Comments

Row 1: A055232
Row 2: A211806
Row 3: A211807
Limiting row sequence: A000330
Let R be the array in A211808 and let R' be the array in A182259. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
1...5...16...36...69...117...184
1...5...16...36...69...119...190
1...5...16...38...73...123...194
1...5...16...38...75...131...204
1...5...16...38...75...131...210
		

Crossrefs

Cf. A211790.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[2 w^k <= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A055232 *)
    Table[t[2, n], {n, 1, z}]  (* A211806 *)
    Table[t[3, n], {n, 1, z}]  (* A211807 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1],
         {n, 1, 12}, {k, 1, n}]] (* A211808 *)
    Table[k (4 k^2 - 3 k + 5)/6,
         {k, 1, z}] (* row-limit sequence, A174723 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A350529 Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 1..k such that no iterated difference is zero, n, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 12, 10, 2, 0, 0, 1, 6, 20, 32, 16, 2, 0, 0, 1, 7, 30, 72, 86, 26, 2, 0, 0, 1, 8, 42, 138, 256, 232, 42, 2, 0, 0, 1, 9, 56, 234, 624, 906, 622, 68, 2, 0, 0
Offset: 0

Views

Author

Pontus von Brömssen, Jan 03 2022

Keywords

Comments

For fixed n, T(n,k) is a quasi-polynomial of degree n in k. For example, T(4,k) = k^4 - (116/27)*k^3 + (25/3)*k^2 + b(k)*k + c(k), where b and c are periodic with period 6.

Examples

			  n\k|  0  1  2   3     4      5       6        7         8         9         10
  ---+--------------------------------------------------------------------------
   0 |  1  1  1   1     1      1       1        1         1         1          1
   1 |  0  1  2   3     4      5       6        7         8         9         10
   2 |  0  0  2   6    12     20      30       42        56        72         90
   3 |  0  0  2  10    32     72     138      234       368       544        770
   4 |  0  0  2  16    86    256     624     1278      2370      4030       6462
   5 |  0  0  2  26   232    906    2790     6900     15096     29536      53678
   6 |  0  0  2  42   622   3180   12366    36964     95494    215146     443464
   7 |  0  0  2  68  1662  11116   54572   197294    601986   1562274    3652850
   8 |  0  0  2 110  4426  38754  240278  1051298   3788268  11325490   30041458
   9 |  0  0  2 178 11774 134902 1056546  5595236  23814458  82024662  246853482
  10 |  0  0  2 288 31316 469306 4643300 29762654 149631992 593798912 2027577296
For n = 4 and k = 3, the following T(4,3) = 16 sequences are counted: 1212, 1213, 1312, 1313, 1323, 2121, 2131, 2132, 2312, 2313, 2323, 3121, 3131, 3132, 3231, 3232.
		

Crossrefs

Rows: A000012 (n=0), A001477 (n=1), A002378 (n=2), A055232 (terms of row n=3 divided by 2).
Columns: A000007 (k=0), A019590 (k=1), A040000 (k=2), A054886 (k=3).

Programs

  • Python
    def A350529_col(k,nmax):
        d = []
        c = [0]*(nmax+1)
        while 1:
            if not d or all(d[-1]):
                c[len(d)] += 1 + (bool(d) and 2*d[0][0] != k+1)
                if len(d) < nmax:
                    d.append([0])
                    for i in range(len(d)-1):
                        d[-1].append(d[-1][-1]-d[-2][i])
            while d and d[-1][0] == k:
                d.pop()
            if not d or len(d) == 1 and 2*d[0][0] >= k: return c
            for i in range(len(d)):
                d[-1][i] += 1

A008670 Molien series for Weyl group F_4.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 16, 18, 20, 24, 28, 30, 36, 40, 44, 50, 56, 60, 69, 75, 81, 90, 99, 105, 117, 126, 135, 147, 159, 168, 184, 196, 208, 224, 240, 252, 272, 288, 304, 324, 344, 360, 385, 405, 425, 450, 475, 495, 525, 550, 575, 605, 635, 660, 696, 726, 756
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3, 4 and 6. - Ilya Gutkovskiy, May 24 2017

References

  • Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 28).

Crossrefs

Programs

  • Magma
    MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    a:= proc(n) local m, r; m := iquo (n, 12, 'r'); r:= r+1; ([4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26][r]+ (6+r+4*m)*m)*m+ [1$3, 2, 3$2, 5, 6, 7, 9, 11, 12][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
  • Mathematica
    Take[CoefficientList[Series[1/((1-x^2)(1-x^6)(1-x^8)(1-x^12)),{x,0,130}], x], {1,-1,2}] (* or *) LinearRecurrence[ {1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1},{1,1,1,2,3,3,5,6,7,9,11,12,16,18},70] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
    
  • Sage
    def A008670_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
    A008670_list(70) # G. C. Greubel, Sep 08 2019

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)). [Corrected by Ralf Stephan, Apr 29 2014]
a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14), with a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(6)=5, a(7)=6, a(8)=7, a(9)=9, a(10)=11, a(11)=12, a(12)=16, a(13)=18. - Harvey P. Dale, Feb 07 2012
a(n) ~ (1/432)*n^3. - Ralf Stephan, Apr 29 2014
a(n) = (120*floor(n/6)^3 + 60*(m+7)*floor(n/6)^2 + 2*(m^5-15*m^4+75*m^3-135*m^2+134*m+240)*floor(n/6) + 3*(m^5-15*m^4+75*m^3-135*m^2+84*m+70) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018
a(n) = 1 + floor((2*n^3 + 42*n^2 + n*(279 + 9*(-1)^n - 48*[(n mod 3)=2]))/864) where [] is the Iverson bracket. - Hoang Xuan Thanh, Jun 22 2025
Showing 1-8 of 8 results.