A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A194615
T(n,k) = Half the number of lower triangles of an (n+1) X (n+1) 0..k array with no element equal to the average of its horizontal and vertical neighbors.
Original entry on oeis.org
1, 5, 5, 16, 96, 47, 36, 775, 4322, 849, 69, 3638, 132214, 571364, 29241, 117, 12438, 1674043, 86867366, 205801866, 1901849, 184, 34247, 12561823, 3703163910, 214726600125, 202803700252, 234932757, 272, 82057, 66369488, 73569838704
Offset: 1
Some solutions for 4X4
..2........0........0........2........2........0........0........0
..0.0......1.1......2.0......1.1......0.0......2.0......1.0......1.2
..0.1.0....0.0.2....1.2.2....2.0.0....1.1.1....2.2.0....0.0.1....2.1.1
..2.2.1.0..2.2.2.0..2.1.0.2..1.2.2.1..1.0.2.1..1.2.2.0..1.0.1.0..1.1.0.2
A182260
Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w
Original entry on oeis.org
0, 3, 11, 28, 56, 99, 159, 240, 344, 475, 635, 828, 1056, 1323, 1631, 1984, 2384, 2835, 3339, 3900, 4520, 5203, 5951, 6768, 7656, 8619, 9659, 10780, 11984, 13275, 14655, 16128, 17696, 19363, 21131, 23004, 24984, 27075, 29279, 31600, 34040
Offset: 1
For n=2, the 3 triples (w,x,y) for which 2w<x+y are (1,1,2), (1,2,1), (1,2,2). The 3 triples for which 2w>x+y are (2,1,1), (2,1,2), (2,2,1).
-
(See the program at A211802.)
LinearRecurrence[{3,-2,-2,3,-1},{0,3,11,28,56},50] (* Harvey P. Dale, Aug 10 2019 *)
A211805
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k>=x^k+y
Original entry on oeis.org
1, 5, 1, 16, 5, 1, 36, 14, 5, 1, 69, 32, 14, 5, 1, 117, 61, 30, 14, 5, 1, 184, 103, 57, 30, 14, 5, 1, 272, 162, 99, 55, 30, 14, 5, 1, 385, 240, 156, 91, 55, 30, 14, 5, 1, 525, 341, 230, 146, 91, 55, 30, 14, 5, 1, 696, 465, 323, 220, 140, 91, 55, 30, 14, 5, 1, 900
Offset: 1
Northwest corner:
1...5...16...36...69...117...184
1...5...14...32...61...103...162
1...5...14...30...57...99....156
1...5...14...30...55...91....146
1...5...14...30...55...91....140
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k >= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A055232 *)
Table[t[2, n], {n, 1, z}] (* A211803 *)
Table[t[3, n], {n, 1, z}] (* A211804 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12},
{k, 1, n}]] (* A211805 *)
Table[k (k + 1) (2 k + 1)/6,
{k, 1, z}] (* row-limit sequence, A000330 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A211808
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y
Original entry on oeis.org
1, 5, 1, 16, 5, 1, 36, 16, 5, 1, 69, 36, 16, 5, 1, 117, 69, 38, 16, 5, 1, 184, 119, 73, 38, 16, 5, 1, 272, 190, 123, 75, 38, 16, 5, 1, 385, 282, 194, 131, 75, 38, 16, 5, 1, 525, 399, 290, 204, 131, 75, 38, 16, 5, 1, 696, 547, 415, 300, 210, 131, 75, 38, 16, 5, 1
Offset: 1
Northwest corner:
1...5...16...36...69...117...184
1...5...16...36...69...119...190
1...5...16...38...73...123...194
1...5...16...38...75...131...204
1...5...16...38...75...131...210
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k <= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A055232 *)
Table[t[2, n], {n, 1, z}] (* A211806 *)
Table[t[3, n], {n, 1, z}] (* A211807 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A211808 *)
Table[k (4 k^2 - 3 k + 5)/6,
{k, 1, z}] (* row-limit sequence, A174723 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A350529
Square array read by antidiagonals downwards: T(n,k) is the number of sequences of length n with terms in 1..k such that no iterated difference is zero, n, k >= 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 12, 10, 2, 0, 0, 1, 6, 20, 32, 16, 2, 0, 0, 1, 7, 30, 72, 86, 26, 2, 0, 0, 1, 8, 42, 138, 256, 232, 42, 2, 0, 0, 1, 9, 56, 234, 624, 906, 622, 68, 2, 0, 0
Offset: 0
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 1 1
1 | 0 1 2 3 4 5 6 7 8 9 10
2 | 0 0 2 6 12 20 30 42 56 72 90
3 | 0 0 2 10 32 72 138 234 368 544 770
4 | 0 0 2 16 86 256 624 1278 2370 4030 6462
5 | 0 0 2 26 232 906 2790 6900 15096 29536 53678
6 | 0 0 2 42 622 3180 12366 36964 95494 215146 443464
7 | 0 0 2 68 1662 11116 54572 197294 601986 1562274 3652850
8 | 0 0 2 110 4426 38754 240278 1051298 3788268 11325490 30041458
9 | 0 0 2 178 11774 134902 1056546 5595236 23814458 82024662 246853482
10 | 0 0 2 288 31316 469306 4643300 29762654 149631992 593798912 2027577296
For n = 4 and k = 3, the following T(4,3) = 16 sequences are counted: 1212, 1213, 1312, 1313, 1323, 2121, 2131, 2132, 2312, 2313, 2323, 3121, 3131, 3132, 3231, 3232.
-
def A350529_col(k,nmax):
d = []
c = [0]*(nmax+1)
while 1:
if not d or all(d[-1]):
c[len(d)] += 1 + (bool(d) and 2*d[0][0] != k+1)
if len(d) < nmax:
d.append([0])
for i in range(len(d)-1):
d[-1].append(d[-1][-1]-d[-2][i])
while d and d[-1][0] == k:
d.pop()
if not d or len(d) == 1 and 2*d[0][0] >= k: return c
for i in range(len(d)):
d[-1][i] += 1
A008670
Molien series for Weyl group F_4.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 16, 18, 20, 24, 28, 30, 36, 40, 44, 50, 56, 60, 69, 75, 81, 90, 99, 105, 117, 126, 135, 147, 159, 168, 184, 196, 208, 224, 240, 252, 272, 288, 304, 324, 344, 360, 385, 405, 425, 450, 475, 495, 525, 550, 575, 605, 635, 660, 696, 726, 756
Offset: 0
- Coxeter and Moser, Generators and Relations for Discrete Groups, Table 10.
- L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 28).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 236
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1).
-
MolienSeries(CoxeterGroup("F4")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 08 2019
-
a:= proc(n) local m, r; m := iquo (n, 12, 'r'); r:= r+1; ([4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26][r]+ (6+r+4*m)*m)*m+ [1$3, 2, 3$2, 5, 6, 7, 9, 11, 12][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
-
Take[CoefficientList[Series[1/((1-x^2)(1-x^6)(1-x^8)(1-x^12)),{x,0,130}], x], {1,-1,2}] (* or *) LinearRecurrence[ {1,0,1,0,-1,1,-2,1,-1,0,1,0,1,-1},{1,1,1,2,3,3,5,6,7,9,11,12,16,18},70] (* Harvey P. Dale, Feb 07 2012 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))) \\ G. C. Greubel, Sep 08 2019
-
def A008670_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^6))).list()
A008670_list(70) # G. C. Greubel, Sep 08 2019
Showing 1-8 of 8 results.
Comments