cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055273 a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 23, 61, 160, 419, 1097, 2872, 7519, 19685, 51536, 134923, 353233, 924776, 2421095, 6338509, 16594432, 43444787, 113739929, 297775000, 779585071, 2040980213, 5343355568, 13989086491, 36623903905, 95882625224, 251023971767, 657189290077, 1720543898464
Offset: 0

Views

Author

Barry E. Williams, May 28 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 29 2018
    
  • Magma
    [Fibonacci(2*n+2) + 5*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    seq(coeff(series((1+5*x)/(1-3*x+x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    Table[3Fibonacci[2n+2]-Fibonacci[2n-3], {n,0,20}] (* Rigoberto Florez, Dec 24 2018 *)
    LinearRecurrence[{3, -1}, {1, 8}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
  • PARI
    vector(30, n, fibonacci(2*n) + 5*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [fibonacci(2*n+2) +5*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020

Formula

a(n) = (8*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 5*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = Fibonacci(2n+2) + 5*Fibonacci(2n),
a(n) = 3*Fibonacci(2n+2) - Fibonacci(2n-3). (End)
E.g.f.: (1/5)*exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + 13*sqrt(5)*sinh(sqrt(5)*x/2)). - Franck Maminirina Ramaharo, Dec 26 2018
a(n) = ChebyshevT(n, 3/2) + (13/2)*ChebyshevU(n-1, 3/2) = ChebyshevU(n, 3/2) + 5*ChebyshevU(n-1, 3/2). - G. C. Greubel, Jan 17 2020