cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055302 Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1

Views

Author

Christian G. Bower, May 11 2000

Keywords

Comments

Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014

Examples

			Triangle begins
     1,
     2,     0;
     6,     3,     0;
    24,    36,     4,     0;
   120,   360,   140,     5,    0;
   720,  3600,  3000,   450,    6, 0;
  5040, 37800, 54600, 18900, 1302, 7, 0;
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.

Crossrefs

Row sums give A000169. Columns 1 through 12: A000142, A055303-A055313. Cf. A055314.
Cf. A248120 for a natural refinement.

Programs

  • Maple
    T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 13 2013
  • Mathematica
    Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid  (* Geoffrey Critzer, Dec 01 2012 *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014