A055302 Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.
1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1
Examples
Triangle begins 1, 2, 0; 6, 3, 0; 24, 36, 4, 0; 120, 360, 140, 5, 0; 720, 3600, 3000, 450, 6, 0; 5040, 37800, 54600, 18900, 1302, 7, 0;
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Maple
T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Nov 13 2013
-
Mathematica
Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid (* Geoffrey Critzer, Dec 01 2012 *)
-
PARI
A055302(n,k)=n!/k!*stirling(n-1, n-k,2); for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print()); \\ Joerg Arndt, Oct 27 2014
Formula
E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014
Comments