cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A000169 Number of labeled rooted trees with n nodes: n^(n-1).

Original entry on oeis.org

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841, 5242880000000000000000000
Offset: 1

Views

Author

Keywords

Comments

Also the number of connected transitive subtree acyclic digraphs on n vertices. - Robert Castelo, Jan 06 2001
For any given integer k, a(n) is also the number of functions from {1,2,...,n} to {1,2,...,n} such that the sum of the function values is k mod n. - Sharon Sela (sharonsela(AT)hotmail.com), Feb 16 2002
The n-th term of a geometric progression with first term 1 and common ratio n: a(1) = 1 -> 1,1,1,1,... a(2) = 2 -> 1,2,... a(3) = 9 -> 1,3,9,... a(4) = 64 -> 1,4,16,64,... - Amarnath Murthy, Mar 25 2004
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n+1) is also the number of partial functions on n labeled objects. - Franklin T. Adams-Watters, Dec 25 2006
In other words, if A is a finite set of size n-1, then a(n) is the number of binary relations on A that are also functions. Note that a(n) = Sum_{k=0..n-1} binomial(n-1,k)*(n-1)^k = n^(n-1), where binomial(n-1,k) is the number of ways to select a domain D of size k from A and (n-1)^k is the number of functions from D to A. - Dennis P. Walsh, Apr 21 2011
This is the fourth member of a set of which the other members are the symmetric group, full transformation semigroup, and symmetric inverse semigroup. For the first three, see A000142, A000312, A002720. - Peter J. Cameron, Nov 03 2024.
More generally, consider the class of sequences of the form a(n) = (n*c(1)*...*c(i))^(n-1). This sequence has c(1)=1. A052746 has a(n) = (2*n)^(n-1), A052756 has a(n) = (3*n)^(n-1), A052764 has a(n) = (4*n)^(n-1), A052789 has a(n) = (5*n)^(n-1) for n>0. These sequences have a combinatorial structure like simple grammars. - Ctibor O. Zizka, Feb 23 2008
a(n) is equal to the logarithmic transform of the sequence b(n) = n^(n-2) starting at b(2). - Kevin Hu (10thsymphony(AT)gmail.com), Aug 23 2010
Also, number of labeled connected multigraphs of order n without cycles except one loop. See link below to have a picture showing the bijection between rooted trees and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
a(n) is also the number of functions f:{1,2,...,n} -> {1,2,...,n} such that f(1) = 1.
For a signed version of A000169 arising from the Vandermonde determinant of (1,1/2,...,1/n), see the Mathematica section. - Clark Kimberling, Jan 02 2012
Numerator of (1+1/(n-1))^(n-1) for n>1. - Jean-François Alcover, Jan 14 2013
Right edge of triangle A075513. - Michel Marcus, May 17 2013
a(n+1) is the number of n x n binary matrices with no more than a single one in each row. Partitioning the set of such matrices by the number k of rows with a one, we obtain a(n+1) = Sum_{k=0..n} binomial(n,k)*n^k = (n+1)^n. - Dennis P. Walsh, May 27 2014
Central terms of triangle A051129: a(n) = A051129(2*n-1,n). - Reinhard Zumkeller, Sep 14 2014
a(n) is the row sum of the n-th rows of A248120 and A055302, so it enumerates the monomials in the expansion of [x(1) + x(2) + ... + x(n)]^(n-1). - Tom Copeland, Jul 17 2015
For any given integer k, a(n) is the number of sums x_1 + ... + x_m = k (mod n) such that: x_1, ..., x_m are nonnegative integers less than n, the order of the summands does not matter, and each integer appears fewer than n times as a summand. - Carlo Sanna, Oct 04 2015
a(n) is the number of words of length n-1 over an alphabet of n letters. - Joerg Arndt, Oct 07 2015
a(n) is the number of parking functions whose largest element is n and length is n. For example, a(3) = 9 because there are nine such parking functions, namely (1,2,3), (1,3,2), (2,3,1), (2,1,3), (3,1,2), (3,2,1), (1,1,3), (1,3,1), (3,1,1). - Ran Pan, Nov 15 2015
Consider the following problem: n^2 cells are arranged in a square array. A step can be defined as going from one cell to the one directly above it, to the right of it or under it. A step above cannot be followed by a step below and vice versa. Once the last column of the square array is reached, you can only take steps down. a(n) is the number of possible paths (i.e., sequences of steps) from the cell on the bottom left to the cell on the bottom right. - Nicolas Nagel, Oct 13 2016
The rationals c(n) = a(n+1)/a(n), n >= 1, appear in the proof of G. Pólya's "elementary, but not too elementary, theorem": Sum_{n>=1} (Product_{k=1..n} a_k)^(1/n) < exp(1)*Sum_{n>=1} a_n, for n >= 1, with the sequence {a_k}{k>=1} of nonnegative terms, not all equal to 0. - _Wolfdieter Lang, Mar 16 2018
Coefficients of the generating series for the preLie operadic algebra. Cf. p. 417 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
a(n)/2^(n-1) is the square of the determinant of the n X n matrix M_n with elements m(j,k) = cos(Pi*j*k/n). See Zhi-Wei Sun, Petrov link. - Hugo Pfoertner, Sep 19 2021
a(n) is the determinant of the n X n matrix P_n such that, when indexed [0, n), P(0, j) = 1, P(i <= j) = i, and P(i > j) = i-n. - C.S. Elder, Mar 11 2024

Examples

			For n=3, a(3)=9 because there are exactly 9 binary relations on A={1, 2} that are functions, namely: {}, {(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,1)} and {(1,2),(2,2)}. - _Dennis P. Walsh_, Apr 21 2011
G.f. = x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 + 117649*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 169.
  • Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
  • Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppnen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 63.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2, and p. 37, (5.52).

Crossrefs

Programs

  • Haskell
    a000169 n = n ^ (n - 1)  -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [n^(n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2015
    
  • Maple
    A000169 := n -> n^(n-1);
    # second program:
    spec := [A, {A=Prod(Z, Set(A))}, labeled]; [seq(combstruct[count](spec, size=n), n=1..20)];
    # third program:
    A000169 := n -> add((-1)^(n+k-1)*pochhammer(n, k)*Stirling2(n-1, k), k = 0..n-1):
    seq(A000169(n), n = 1 .. 23);  # Mélika Tebni, May 07 2023
  • Mathematica
    Table[n^(n - 1), {n, 1, 20}] (* Stefan Steinerberger, Apr 01 2006 *)
    Range[0, 18]! CoefficientList[ Series[ -LambertW[-x], {x, 0, 18}], x] // Rest (* Robert G. Wilson v, updated by Jean-François Alcover, Oct 14 2019 *)
    (* Next, a signed version A000169 from the Vandermonde determinant of (1,1/2,...,1/n) *)
    f[j_] := 1/j; z = 12;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]
    1/%  (* A203421 *)
    Table[v[n]/v[n + 1], {n, 1, z - 1}]  (* A000169 signed *)
    (* Clark Kimberling, Jan 02 2012 *)
    a[n_]:=Det[Table[If[i==0,1,If[i<=j,i,i-n]],{i,0,n-1},{j,0,n-1}]]; Array[a,20] (* Stefano Spezia, Mar 12 2024 *)
  • MuPAD
    n^(n-1) $ n=1..20 /* Zerinvary Lajos, Apr 01 2007 */
    
  • PARI
    a(n) = n^(n-1)
    
  • Python
    def a(n): return n**(n-1)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Sep 19 2021
    
  • Python
    from sympy import Matrix
    def P(n): return [[ (i-n if i > j else i) + (i == 0) for j in range(n) ] for i in range(n)]
    print(*(Matrix(P(n)).det() for n in range(1, 21)), sep=', ') # C.S. Elder, Mar 12 2024

Formula

The e.g.f. T(x) = Sum_{n>=1} n^(n-1)*x^n/n! satisfies T(x) = x*exp(T(x)), so T(x) is the functional inverse (series reversion) of x*exp(-x).
Also T(x) = -LambertW(-x) where W(x) is the principal branch of Lambert's function.
T(x) is sometimes called Euler's tree function.
a(n) = A000312(n-1)*A128434(n,1)/A128433(n,1). - Reinhard Zumkeller, Mar 03 2007
E.g.f.: LambertW(x)=x*G(0); G(k) = 1 - x*((2*k+2)^(2*k))/(((2*k+1)^(2*k)) - x*((2*k+1)^(2*k))*((2*k+3)^(2*k+1))/(x*((2*k+3)^(2*k+1)) - ((2*k+2)^(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 30 2011
a(n) = Sum_{i=1..n} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
Limit_{n->oo} a(n)/A000312(n-1) = e. - Daniel Suteu, Jul 23 2016
From Amiram Eldar, Nov 20 2020: (Start)
Sum_{n>=1} 1/a(n) = A098686.
Sum_{n>=1} (-1)^(n+1)/a(n) = A262974. (End)
a(n) = Sum_{k=0..n-1} (-1)^(n+k-1)*Pochhammer(n, k)*Stirling2(n-1, k). - Mélika Tebni, May 07 2023
In terms of Eulerian numbers A340556(n,k) of the second order Sum_{m>=1} m^(m+n) z^m/m! = 1/(1-T(z))^(2n+1) * Sum_{k=0..n} A2(n,k) T(z)^k. - Marko Riedel, Jan 10 2024

A055314 Triangle T(n,k) read by rows: number of labeled trees with n nodes and k leaves, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 3, 0, 12, 4, 0, 60, 60, 5, 0, 360, 720, 210, 6, 0, 2520, 8400, 5250, 630, 7, 0, 20160, 100800, 109200, 30240, 1736, 8, 0, 181440, 1270080, 2116800, 1058400, 151704, 4536, 9, 0, 1814400, 16934400, 40219200, 31752000, 8573040, 695520, 11430, 10, 0
Offset: 2

Views

Author

Christian G. Bower, May 11 2000

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     3,    0;
    12,    4,    0;
    60,   60,    5,   0;
   360,  720,  210,   6, 0;
  2520, 8400, 5250, 630, 7, 0;
  ...
		

References

  • Moon, J. W. Various proofs of Cayley's formula for counting trees. 1967 A seminar on Graph Theory pp. 70--78 Holt, Rinehart and Winston, New York; MR0214515 (35 #5365). - From N. J. A. Sloane, Jun 07 2012
  • Renyi, Alfred. Some remarks on the theory of trees. Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 1959 73--85. MR0115938 (22 #6735). - From N. J. A. Sloane, Jun 07 2012
  • D. Stanton and D. White, Constructive Combinatorics, Springer, 1986; see p. 67.

Crossrefs

Cf. A000272.
Row sums give A000272. Columns 2 through 12: A001710, A055315-A055324.

Programs

  • Maple
    T := (n,k) -> binomial(n+1,k)*add( binomial(n+1-k,i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k);
    # The following version gives the triangle for any n>=1, k>=1, based on the Harary et al. (1969) paper - N. J. A. Sloane, Jun 07 2012
    with(combinat);
    R:=proc(n,k)
    if n=1 then if k=1 then RETURN(1) else RETURN(0); fi
        elif (n=2 and k=2) then RETURN(1)
        elif (n=2 and k>2) then RETURN(0)
        else stirling2(n-2,n-k)*n!/k!;
        fi;
    end;
  • Mathematica
    Table[Table[Binomial[n,k] Sum[(-1)^j Binomial[n-k,j] (n-k-j)^(n-2),{j,0,n-k}],{k,2,n-1}],{n,2,10}]//Grid (* Geoffrey Critzer, Nov 12 2011 *)
    Table[(n!/k!)*StirlingS2[n - 2, n - k], {n, 2, 7}, {k, 2, n}]//Flatten (* G. C. Greubel, May 17 2017 *)
  • Maxima
    A055314(n,k) := block(
            n!/k!*stirling2(n-2,n-k)
    )$
    for n : 2 thru 10 do
            for k : 2 thru n do
                    print(A055314(n,k)," ") ; /* R. J. Mathar, Mar 06 2012 */
    
  • PARI
    for(n=2,20, for(k=2,n, print1((n!/k!)*stirling(n-2, n-k, 2), ", "))) \\ G. C. Greubel, May 17 2017

Formula

E.g.f.: A(x, y)=(1-x+x*y)*B(x, y)-B(x, y)^2/2. B(x, y): e.g.f. of A055302.
T(n, k) = binomial(n+1, k)*Sum( binomial(n+1-k, i)*(-1)^(n+1-k-i)*i^(n-1), i=0..n+1-k).
T(n, k) = (n!/k!)*Stirling2(n-2, n-k). - Vladeta Jovovic, Jan 28 2004

A055897 a(n) = n*(n-1)^(n-1).

Original entry on oeis.org

1, 2, 12, 108, 1280, 18750, 326592, 6588344, 150994944, 3874204890, 110000000000, 3423740047332, 115909305827328, 4240251492291542, 166680102383370240, 7006302246093750000, 313594649253062377472, 14890324713954061755186, 747581753430634213933056
Offset: 1

Views

Author

Christian G. Bower, Jun 12 2000

Keywords

Comments

Total number of leaves in all labeled rooted trees with n nodes.
Number of endofunctions of [n] such that no element of [n-1] is fixed. E.g., a(3)=12: 123 -> 331, 332, 333, 311, 312, 313, 231, 232, 233, 211, 212, 213.
Number of functions f: {1, 2, ..., n} --> {1, 2, ..., n} such that f(1) != f(2), f(2) != f(3), ..., f(n-1) != f(n). - Warut Roonguthai, May 06 2006
Determinant of the n X n matrix ((2n, n^2, 0, ..., 0), (1, 2n, n^2, 0, ..., 0), (0, 1, 2n, n^2, 0, ..., 0), ..., (0, ..., 0, 1, 2n)). - Michel Lagneau, May 04 2010
For n > 1: a(n) = A240993(n-1) / A240993(n-2). - Reinhard Zumkeller, Aug 31 2014
Total number of points m such that f^(-1)(m) = {m}, (i.e., the preimage of m is the singleton set {m}) summed over all functions f:[n]->[n]. - Geoffrey Critzer, Jan 20 2022

Crossrefs

Programs

Formula

E.g.f.: x/(1-T), where T=T(x) is Euler's tree function (see A000169).
a(n) = Sum_{k=1..n} A055302(n, k)*k.
a(n) = the n-th term of the (n-1)-th binomial transform of {1, 1, 4, 18, 96, ..., (n-1)*(n-1)!, ...} (cf. A001563). - Paul D. Hanna, Nov 17 2003
a(n) = (n-1)^(n-1) + Sum_{i=2..n} (n-1)^(n-i)*binomial(n-1, i-1)*(i-1) *(i-1)!. - Paul D. Hanna, Nov 17 2003
a(n) = [x^(n-1)] 1/(1 - (n-1)*x)^2. - Paul D. Hanna, Dec 27 2012
a(n) ~ exp(-1) * n^n. - Vaclav Kotesovec, Nov 14 2014

Extensions

Additional comments from Vladeta Jovovic, Mar 31 2001 and Len Smiley, Dec 11 2001

A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
      1
      1     0
      1     0     1
      2     0     6     0
     15    12    30     4     3
    314   320   260    80    50     0
  13757 10890  5445  1860   735    66    15
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A245797.
Column k = 0 is A059167.
Column k = 1 is A277072.
Column k = 2 is A277073.
Column k = 3 is A277074.
Column k = n is A123023.
Column k = n - 1 is A327370.
The unlabeled version is A327371.
The covering version is A327377.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A141618 Triangle read by rows: number of nilpotent partial transformations (of an n-element set) of height r (height(alpha) = |Im(alpha)|), 0 <= r < n.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 28, 72, 24, 1, 75, 500, 600, 120, 1, 186, 2700, 7800, 5400, 720, 1, 441, 12642, 73500, 117600, 52920, 5040, 1, 1016, 54096, 571536, 1764000, 1787520, 564480, 40320, 1, 2295, 217800, 3916080, 21019824, 40007520, 27941760, 6531840, 362880, 1, 5110, 839700, 24555600, 214326000
Offset: 1

Views

Author

Abdullahi Umar, Aug 23 2008

Keywords

Comments

The sum of each row of the sequence (as a triangular array) is A000272. Second left-downward diagonal is A058877.
From Tom Copeland, Oct 26 2014: (Start)
With T(x,t) the e.g.f. for A055302 for the number of labeled rooted trees with n nodes and k leaves, the mirror of the row polynomials of this array are given by e^T(x,t) = exp[ t * x + (2t) * x^2/2! + (6t + 3t^2) * x^3/3! + ...] = 1 + t * x + (2t + t^2) * x^2/2! + (6t + 9t^2 + t^3) * x^3/3! + ... = 1 + Nr(x,t).
Equivalently, e^x-1 = Nr[Tinv(x,t),t] = t * N[t*Tinv(x,t),1/t], where N(x,t) is the e.g.f. of this array and Tinv(x,t) is the comp. inverse in x of T(x,t). Note that Nr(x,t) = t * N(x*t,1/t), and N(x,t) = t * Nr(x*t,1/t). Also, log[1 + Nr(x,t)]= x * [t + Nr(x,t)] = T(x,t).
E.g.f. is N(x,t)= t * {exp[T(x*t,1/t)] - 1}, and log[1 + N(x,t)/t] = T(x*t,1/t) = x + (2t) * x^2/2! + (3t + 6t^2) * x^3/3! + (4t + 36t^2 + 24t^3) * x^4/4! + ... = x + (t) * x^2 + (t + 2t^2) * x^3/2! + (t + 9t^2 + 6t^3) * x^4/3! + ... is the comp. inverse in x of x / [1 + t * (e^x - 1)].
The exp/log transforms (A036040/A127671) generally give associations between enumerations of sets of connected graphs/objects (in this case, trees) and sets of disconnected (or not necessarily connected) graphs/objects (in this case, bipartite graphs of the nilpotent transformations). The transforms also relate formal cumulants and moments so that Nr(x,t) is then the e.g.f. for the formal moments associated to the formal cumulants whose e.g.f. is T(x,t). (End)
T(n,k) is the number of parking functions of length n containing exactly k+1 distinct values in its image. - Alan Kappler, Jun 08 2024

Examples

			N(J(4,2)) = 6*6*2 = 72.
From _Peter Bala_, Oct 22 2008: (Start)
Triangle begins
n\k|..0.....1.....2.....3.....4....5
=====================================
.1.|..1
.2.|..1.....2
.3.|..1.....9.....6
.4.|..1....28....72....24
.5.|..1....75...500...600...120
.6.|..1...186..2700..7800..5400...720
...
(End)
		

Crossrefs

Programs

  • Maple
    A048993 := proc(n,k)
        combinat[stirling2](n,k) ;
    end proc:
    A141618 := proc(n,k)
        binomial(n,k)*k!*A048993(n,k+1) ;
    end proc:
  • Mathematica
    Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]/(1 + t*x),{x,0,9}]],x]*Table[n!, {n,0,9}],t]] (* Peter Luschny, Oct 24 2015, after Peter Bala *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    T(n,k)=A055302(n+1,n+1-k) / (n+1);
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

N(J(n,r)) = C(n,r)*S(n,r+1)*r! where S(n, r + 1) is a Stirling number of the second kind (given by A048993 with zeros removed); generating function = (x+1)^(n-1).
From Peter Bala, Oct 22 2008: (Start)
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let f(x) = 1 + a*x + a*x^2/2! + a*x^3/3! + ... . Then the e.g.f. for this table is I(f(x)) = 1 + a*x +(a + 2*a^2)*x^2/2! + (a + 9*a^2 + 6*a^3)*x^3/3! + (a + 28*a^2 + 72*a^3 + 24*a^4)*x^4/4! + ... . Note, if we take f(x) = 1 + a*x + a*x^2 + a*x^3 + ... then I(f(x)) is the o.g.f. of the Narayana triangle A001263. (End)
A generator for this array is given by the inverse, g(x,t), of f(x,t)= x/(1 + t * (e^x-1)). Then A248927 gives h(x,t)= x / f(x,t) = 1 + t*(e^x-1)= 1 + t * (x + x^2/2! + x^3/3! + ...) and g(x,t)= x * (1 + t * x + (t + 2 t^2) * x^2/2! + (t + 9 t^2 + 6 t^3) * x^3/3! + ...), so by Bala's arguments A248927 is a refinement of A141618 with row sums A000272. The connection to Narayana numbers is reflected in the relation between A248927 and A134264. See A145271 for more relations that g(x,t) and f(x,t) must satisfy. - Tom Copeland, Oct 17 2014
T(n,k) = C(n,k-1) * A028246(n,k) = C(n,k-1) * A019538(n,k)/k = A055302(n+1,n+1-k) / (n+1). - Tom Copeland, Oct 25 2014
E.g.f. is the series reversion of log(1 + x)/(1 + t*x) with respect to x. Cf. A198204. - Peter Bala, Oct 21 2015

Extensions

More terms from Joerg Arndt, Oct 27 2014

A248120 Triangle read by rows: Lagrange (compositional) inversion of a function in terms of the coefficients of the Taylor series expansion of its reciprocal, scaled version of A248927, n >= 1, k = 1..A000041(n-1).

Original entry on oeis.org

1, 2, 6, 3, 24, 36, 4, 120, 360, 60, 80, 5, 720, 3600, 1800, 1200, 300, 150, 6, 5040, 37800, 37800, 16800, 3150, 12600, 3150, 420, 630, 252, 7, 40320, 423360, 705600, 235200, 176400, 352800, 58800, 35280, 23520, 35280, 7056, 1960, 1176, 392, 8
Offset: 1

Views

Author

Tom Copeland, Oct 28 2014

Keywords

Comments

Coefficients are listed in reverse graded colexicographic order (A228100). This is the reverse of Abramowitz and Stegun order (A036036).
Coefficients for Lagrange (compositional) inversion of a function in terms of the Taylor series expansion of its shifted reciprocal. Complementary to A134264 for formal power series and a scaled version of A248927. A refinement of A055302, which enumerates the number of labeled rooted trees with n nodes and k leaves, with row sums A000169.
Given an invertible function f(t) analytic about t=0 with f(0)=0 and df(0)/dt not 0, form h(t) = t / f(t) and denote h_n = (n') as the coefficient of t^n/n! in h(t). Then the compositional inverse of f(t), g(t), as a formal Taylor series, or e.g.f., is given up to the first few orders by
g(t) = [ 1 (0') ] * t
+ [ 2 (0') (1') ] * t^2/2!
+ [ 6 (0') (1')^2 + 3 (0')^2 (2') ] * t^3/3!
+ [24 (0') (1')^3 + 36 (0')^2 (1') (2') + 4 (0')^3 (3')] * t^4/4!
+ [120 (0') (1')^4 + 360 (0')^2 (1')^2 (2') + (0')^3 [60 (2')^2
+ 80 (1') (3')] + 5 (0')^4 (4')] * t^5/5!
+ [720 (0')(1')^5 + 3600 (0')^2 (1')^3(2') + (0')^3 [1800 (1')(2')^2 + 1200 ( 1')^2(3')] + (0')^4 [300 (2')(3') + 150 (1')(4')] + 6 (0')^5 (5')] * t^6/6! + ... .
Operating with [1/(n*(n-1))] d/d(1') = [1/(n*(n-1))] d/d(h_1) on the n-th partition polynomial in square brackets above associated with t^n/n! generates the (n-1)-th partition polynomial.
Each n-th partition polynomial here is n times the (n-1)-th partition polynomial of A248927.
From Tom Copeland, Nov 24 2014: (Start)
The n-th row is a mapping of the homogeneous symmetric monomials generated by [x(1) + x(2) + ... + x(n)]^(n-1) under the umbral mapping x(m)^j = h_j, for any m. E.g., [a + b + c]^2 = [a^2 + b^2 + c^2] + 2 * [a*b + a*c + b*c] is mapped to [3 * h_2] + 2 * [3 * h_1 * h_1] = 3 * h_2 + 6 * h_1^2 = A248120(3) with h_0 = 1. (Example corrected Jul 14 2015.)
For another example and relations to A134264 and A036038, see A134264. The general relation is n * A134264(n) = A248120(n) / A036038(n-1) where the arithmetic is performed on the coefficients of matching partitions in each row n.
The Abramowitz and Stegun reference in A036038 gives combinatorial interpretations of A036038 and relations to other number arrays.
This can also be related to repeated umbral composition of Appell sequences and topology with the Bernoulli numbers playing a special role. See the Todd class link. (End)
As presented above and in the Copeland link, this entry is related to exponentiation of e.g.f.s and, therefore, to discussions in the Scott and Sokal preprint (see eqn. 3.1 on p. 10 and eqn. 3.62 p. 24). - Tom Copeland, Jan 17 2017

Examples

			Triangle begins
     1;
     2;
     6,     3;
    24,    36,     4;
   120,   360,    60,    80,    5;
   720,  3600,  1800,  1200,  300,   150,    6;
  5040, 37800, 37800, 16800, 3150, 12600, 3150, 420, 630, 252, 7;
  ...
For f(t)= e^t-1, h(t)= t/f(t)= t/(e^t-1), the e.g.f. for the Bernoulli numbers, and plugging the Bernoulli numbers into the Lagrange inversion formula gives g(t)= t - t^2/2 + t^3/3 + ... = log(1+t).
		

Crossrefs

Cf. A134264 and A248927, "scaled" versions of this Lagrange inversion.
Cf. A036038.

Programs

  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); (n+1)*n!^2/((n-#v+1)!*prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); x!^c*c!))}
    row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n-1))]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022

Formula

For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is (j-1)! P(j,m;a...) / [(2!)^a_2 (3!)^a_3 ... ((j-1)!)^a_(j-1) ] for the k-th partition of j-1. The partitions are in reverse order--from bottom to top--from the order in Abramowitz and Stegun (page 831).
For example, from g(t) above, T(6,3) = 5! * [6!/(3!*2!)]/(2!)^2 = 1800 for the 3rd partition from the bottom under n=6-1=5 with m=3 parts, and T(6,5) = 5! * [6!/4!]/(2!*3!) = 300.
If the initial factorial and final denominator of T(n,k) are removed and the expression divided by j and the partitions reversed in order, then A134264 is obtained, a refinement of the Narayana numbers.
For f(t) = t*e^(-t), g(t) = T(t), the Tree function, which is the e.g.f. of A000169, and h(t) = t/f(t) = e^t, so h_n = 1 for all n in this case; therefore, the row sums are A000169(n) = n^(n-1) = n* A000272(n).
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}=1/[d{x/[h_0+h_1*x+ ...]/dx]. Then the partition polynomials above are given by (W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t)=exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)). See A145271.
With exp[x* PS(.,t)] = exp[t*g(x)]=exp[x*W(y)d/dy] exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t)= n * PS(n-1,t) are R = t * W(d/dt) and L =(d/dt)/h(d/dt)=(d/dt) 1/[(h_0)+(h_1)*d/dt+(h_2)*(d/dt)^2/2!+...], which will give a lowering operator associated to the refined f-vectors of permutohedra (cf. A133314 and A049019).
Then [dPS(n,z)/dz]/n eval. at z=0 are the row partition polynomials of this entry. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
Following the notes connected to the Lagrange reversion theorem in A248927, a generator for the n-th partition polynomial P_n of this entry is (d/dx)^(n-1) (h (x))^n, and -log(1-t*P.) = (t*Q.) / (1 - t*Q.), umbrally, where (Q.)^n = Q_n is the n-th partition polynomial of A248927. - Tom Copeland, Nov 25 2016
With h_0 = 1, the n-th partition polynomial is obtained as the n-th element (with initial index 0) of the first column of M^{n+1}, where M is the matrix with M_{i,j}= binomial(i,j) h_{i-j}, i.e., the lower triangular Pascal matrix with its n-th diagonal multiplied by h_n. This follows from the Lagrange inversion theorem and the relation between powers of matrices such as M and powers of formal Taylor series discussed in A133314. This is equivalent to repeated binomial convolution of the coefficients of the Taylor series with itself. - Tom Copeland, Nov 13 2019
T(n,k) = n*A248927(n,k). - Andrew Howroyd, Feb 02 2022

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 02 2022

A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 10, 12, 12, 4, 3, 253, 260, 160, 60, 35, 0, 12068, 9150, 4230, 1440, 480, 66, 15, 1052793, 570906, 195048, 53200, 12600, 2310, 427, 0, 169505868, 63523656, 15600032, 3197040, 585620, 95088, 14056, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A graph is covering if there are no isolated vertices.

Examples

			Triangle begins:
      1
      0     0
      0     0     1
      1     0     3     0
     10    12    12     4     3
    253   260   160    60    35     0
  12068  9150  4230  1440   480    66    15
		

Crossrefs

Row sums are A006129.
Column k = 0 is A100743.
Column k = n is A123023.
Row sums without the first column are A327227.
The non-covering version is A327369.
The unlabeled version is A327372.

Programs

  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise inverse binomial transform of A327369.
E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 05 2019

A055303 Number of labeled rooted trees with n nodes and 2 leaves.

Original entry on oeis.org

3, 36, 360, 3600, 37800, 423360, 5080320, 65318400, 898128000, 13172544000, 205491686400, 3399953356800, 59499183744000, 1098446469120000, 21341245685760000, 435361411989504000, 9305850181275648000, 208013121699102720000, 4853639506312396800000
Offset: 3

Views

Author

Christian G. Bower, May 11 2000

Keywords

Comments

a(n+1) is the sum of the zero moments over all permutations of n. E.g., a(4) is [1,2,3].[0,1,2] + [1,3,2].[0,1,2] + [2,1,3].[0,1,2] + [2,3,1].[0,1,2] + [3,1,2].[0,1,2] + [3,2,1].[0,1,2] = 8 + 7 + 7 + 5 + 5 + 4 = 36. - Jon Perry, Feb 20 2004
a(n) is the number of pairs of elements (p(i),p(j)) in an n-permutation such that i > j and p(i) < p(j) where j is not equal to i-1. Loosely speaking, we could say: the number of inversions that are not descents. A055303 + A001286 = A001809. For example, a(3)=3 from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have the pairs (1,2), (2,3) and (1,3) respectively. - Geoffrey Critzer, Jan 06 2013

Crossrefs

Column 2 of A055302.

Programs

  • Maple
    seq(n!*(n-2)*(n-1)/4, n = 3..21); # Zerinvary Lajos, Apr 25 2008 [corrected by Georg Fischer, Aug 17 2021]
    f:= gfun:-rectoproc({(n-3)*a(n) - (n^2-n)*a(n-1), a(3)=3}, a(n), remember): map(f, [$3..20]); # Georg Fischer, Aug 17 2021
  • Mathematica
    With[{nn=20}, Drop[CoefficientList[Series[x^3/(2(1-x)^3), {x,0,nn}], x] * Range[0,nn]!, 3]] (* Harvey P. Dale, Nov 22 2012 *)

Formula

E.g.f.: x^3/(2*(1-x)^3).
a(n) = (n-2)!*t(n-2)*t(n-1) = (n-2)!*(n-2)*(n-1)^2*n/4 = n!*(n-2)*(n-1)/4 = n!*t(n-2)/2 where t = A000217. - Jon Perry, Feb 22 2004
D-finite with recurrence: (n-3)*a(n) - (n^2 - n)*a(n-1) = 0. - Georg Fischer, Aug 17 2021
a(n) = 3 * A001754(n). - Alois P. Heinz, Aug 17 2021

A248927 Triangle read by rows: T(n,k) are the coefficients of the Lagrange (compositional) inversion of a function in terms of the Taylor series expansion of its reciprocal, n >= 1, k = 1..A000041(n-1).

Original entry on oeis.org

1, 1, 2, 1, 6, 9, 1, 24, 72, 12, 16, 1, 120, 600, 300, 200, 50, 25, 1, 720, 5400, 5400, 2400, 450, 1800, 450, 60, 90, 36, 1, 5040, 52920, 88200, 29400, 22050, 44100, 7350, 4410, 2940, 4410, 882, 245, 147, 49, 1, 40320, 564480, 1411200, 376320, 705600, 940800
Offset: 1

Views

Author

Tom Copeland, Oct 16 2014

Keywords

Comments

Coefficients are listed in reverse graded colexicographic order (A228100). This is the reverse of Abramowitz and Stegun order (A036036).
Coefficients for Lagrange (compositional) inversion of a function in terms of the Taylor series expansion of its shifted reciprocal. Complementary to A134264 for formal power series. A refinement of A141618 with row sums A000272.
Given an invertible function f(t) analytic about t=0 with f(0)=0 and df(0)/dt not 0, form h(t) = t / f(t) and denote h_n = (n') as the coefficient of t^n/n! in h(t). Then the compositional inverse of f(t), g(t), as a formal Taylor series, or e.g.f., is given up to the first few orders by
g(t)/t = [ 1 (0') ]
+ [ 1 (0') (1') ] * t
+ [ 2 (0') (1')^2 + 1 (0')^2 (2') ] * t^2/2!
+ [ 6 (0') (1')^3 + 9 (0')^2 (1') (2') + 1 (0')^3 (3') ] * t^3/3!
+ [24 (0') (1')^4 + 72 (0')^2 (1')^2 (2') + (0')^3 [12 (2')^2
+ 16 (1') (3')] + (0')^4 (4')] * t^4/4!
+ [120 (0')(1')^5 + 600 (0')^2 (1')^3(2') + (0')^3 [300 (1')(2')^2 + 200 ( 1')^2(3')] + (0')^4 [50 (2')(3') + 25 (1')(4')] + (0')^5 (5')] * t^5/5! + [720 (0')(1')^6 + (0')^2 (1')^4(2')+(0')^3 [5400 (1')^2(2')^2 + 2400 (1')^3(3')] + (0')^4 [450 (2')^3+ 1800 (1')(2')(3') + 450( 1')^2(4')]+ (0')^5 [60 (3')^2 + 90 (2')(4') + 36 (1')(5')] + (0')^6 (6')] * t^6/6! + ...
..........
From Tom Copeland, Oct 28 2014: (Start)
Expressing g(t) as a Taylor series or formal e.g.f. in the indeterminates h_n generates a refinement of A055302, which enumerates the number of labeled root trees with n nodes and k leaves, with row sum A000169.
Operating with (1/n^2) d/d(1') = (1/n^2) d/d(h_1) on the n-th partition polynomial in square brackets above associated with t^n/n! generates the (n-1)-th partition polynomial.
Multiplying the n-th partition polynomial here by (n + 1) gives the (n + 1)-th partition polynomial of A248120. (End)
These are also the coefficients in the expansion of a series related to the Lagrange reversion theorem presented in Wikipedia of which the Lagrange inversion formula about the origin is a special case. Cf. Copeland link. - Tom Copeland, Nov 01 2016

Examples

			Triangle T(n,k) begins:
    1;
    1;
    2,    1;
    6,    9,    1;
   24,   72,   12,   16,   1;
  120,  600,  300,  200,  50,   25,   1;
  720, 5400, 5400, 2400, 450, 1800, 450, 60, 90, 36, 1;
  ...
For f(t) = e^t-1, h(t) = t/f(t) = t/(e^t-1), the e.g.f. for the Bernoulli numbers, and plugging the Bernoulli numbers into the Lagrange inversion formula gives g(t) = t - t^2/2 + t^3/3 + ... = log(1+t).
		

Crossrefs

Cf. A134264 and A248120, "scaled" versions of this Lagrange inversion.
Cf. A036038.

Programs

  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); n!^2/((n-#v+1)!*prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); x!^c*c!))}
    row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n-1))]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022

Formula

For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is [(j-1)!/j]* P(j,m;a...) / [(2!)^a_2 (3!)^a_3 ... ((j-1)!)^a_(j-1) ] for the k-th partition of j-1. The partitions are in reverse order--from bottom to top--from the order in Abramowitz and Stegun (page 831).
For example, from g(t) above, T(6,3) = [5!/6][6!/(3!*2!)]/(2!)^2 = 300 for the 3rd partition from the bottom under n=6-1=5 with m=3 parts, and T(6,5) = [5!/6][6!/4!]/(2!*3!) = 50.
If the initial factorial and final denominator are removed and the partitions reversed in order, A134264 is obtained, a refinement of the Narayana numbers.
For f(t) = t*e^(-t), g(t) = T(t), the Tree function, which is the e.g.f. of A000169, and h(t) = t/f(t) = e^t, so h_n = 1 for all n in this case; therefore, the row sums of A248927 are A000169(n)/n = n^(n-2) = A000272(n).
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}=1/{d[x/[h_0+h_1*x+ ...]]/dx}. Then the partition polynomials above are given by (1/n)(W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t)= exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)). See A145271.
With exp[x* PS(.,t)] = exp[t*g(x)]=exp[x*W(y)d/dy] exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t)= n * PS(n-1,t) are R = t * W(d/dt) and L =(d/dt)/h(d/dt)=(d/dt) 1/[(h_0)+(h_1)*d/dt+(h_2)*(d/dt)^2/2!+...], which will give a lowering operator associated to the refined f-vectors of permutohedra (cf. A133314 and A049019).
Then [dPS(n,z)/dz]/n eval. at z=0 are the row partition polynomials of this entry. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
As noted in A248120 and A134264, this entry is given by the Hadamard product by partition of A134264 and A036038. For example, (1,4,2,6,1)*(1,4,6,12,24) = (1,16,12,72,24). - Tom Copeland, Nov 25 2016
T(n,k) = ((n-1)!)^2/((n-j)!*Product_{i>=1} s_i!*(i!)^s_i), where (1*s_1 + 2*s_2 + ... = n-1) is the k-th partition of n-1 and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 02 2022

Extensions

Name edited and terms a(31) and beyond from Andrew Howroyd, Feb 02 2022

A219859 Triangular array read by rows: T(n,k) is the number of endofunctions, functions f:{1,2,...,n}->{1,2,...,n}, that have exactly k elements with no preimage; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 84, 4, 0, 120, 1200, 1500, 300, 5, 0, 720, 10800, 23400, 10800, 930, 6, 0, 5040, 105840, 352800, 294000, 63210, 2646, 7, 0, 40320, 1128960, 5362560, 7056000, 2857680, 324576, 7112, 8, 0, 362880, 13063680, 83825280, 160030080, 105099120, 23496480, 1524600, 18360, 9, 0
Offset: 0

Views

Author

Geoffrey Critzer, Dec 01 2012

Keywords

Comments

Equivalently, T(n,k) is the number of endofunctions whose functional digraph has exactly k leaves.
Equivalently, T(n,k) is the number of doubly rooted trees with k leaves. Here, a doubly rooted tree is a labeled tree in which two special vertices have been selected and the order of the selection matters. [Bona page 266]
Row sums are n^n.

Examples

			Triangle T(n,k) begins:
    1;
    1,     0;
    2,     2,     0;
    6,    18,     3,     0;
   24,   144,    84,     4,   0;
  120,  1200,  1500,   300,   5, 0;
  720, 10800, 23400, 10800, 930, 6, 0;
  ...
		

References

  • M. Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007.

Crossrefs

Column k=0-1 give: A000142, A001804.
Row sums give A000312.
T(2n,n) gives A288312.

Programs

  • Mathematica
    Table[Table[n!/k!StirlingS2[n,n-k],{k,0,n}],{n,0,8}]//Grid
  • PARI
    row(n) = vector(n+1, k, k--; n!/k! * stirling(n,n-k,2)); \\ Michel Marcus, Jan 24 2022

Formula

T(n,k) = n!/k! * Stirling2(n,n-k).
T(n,0) = n!.
T(n,k) = A055302(n,k)*(n-k) + A055302(n,k+1)*(k+1). The first term (on rhs of this equation) is the number of such functions in which the preimage of f(n) contains more than one element. The second term is the number of such functions in which the preimage of f(n) contains exactly one element.
T(n,k) = binomial(n,k) Sum_{j=0..n-k}(-1)^j*binomial(n-k,j)*(n-k-j)^n. - Geoffrey Critzer, Aug 20 2013
E.g.f.: 1/(1 - (A(x,y) - y*x + x)) where A(x,y) is the e.g.f. for A055302. - Geoffrey Critzer, Jan 24 2022
From Alois P. Heinz, Jan 24 2022: (Start)
Sum_{k=0..n} k * T(n,k) = A209290(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A344053(n). (End)
Showing 1-10 of 24 results. Next