A055302
Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1
Triangle begins
1,
2, 0;
6, 3, 0;
24, 36, 4, 0;
120, 360, 140, 5, 0;
720, 3600, 3000, 450, 6, 0;
5040, 37800, 54600, 18900, 1302, 7, 0;
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.
Cf.
A248120 for a natural refinement.
-
T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Nov 13 2013
-
Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid (* Geoffrey Critzer, Dec 01 2012 *)
-
A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print());
\\ Joerg Arndt, Oct 27 2014
A055349
Triangle of labeled mobiles (circular rooted trees) with n nodes and k leaves.
Original entry on oeis.org
1, 2, 0, 6, 3, 0, 24, 36, 8, 0, 120, 360, 220, 30, 0, 720, 3600, 4200, 1500, 144, 0, 5040, 37800, 71400, 47250, 11508, 840, 0, 40320, 423360, 1176000, 1234800, 545664, 98784, 5760, 0, 362880, 5080320, 19474560, 29635200, 20469456, 6618528, 940896, 45360, 0
Offset: 1
Triangle begins:
1;
2, 0;
6, 3, 0;
24, 36, 8, 0;
120, 360, 220, 30, 0;
720, 3600, 4200, 1500, 144, 0;
5040, 37800, 71400, 47250, 11508, 840, 0;
...
-
T[rows_] := {{1}}~Join~((cc = CoefficientList[#, y]; Append[Rest[cc], 0] * Length[cc]!)& /@ (CoefficientList[InverseSeries[x/(y-Log[1-x + O[x]^rows] ), x], x][[3;;]]));
T[9] // Flatten (* Jean-François Alcover, Oct 31 2019 *)
-
A(n)={my(v=Vec(serlaplace(serreverse(x/(y - log(1-x + O(x^n))))))); vector(#v, i, Vecrev(v[i]/y, i))}
{ my(T=A(10)); for(i=1, #T, print(T[i])) } \\ Andrew Howroyd, Sep 23 2018
A202363
Triangular array read by rows: T(n,k) is the number of inversion pairs ( p(i) < p(j) with i>j ) that are separated by exactly k elements in all n-permutations (where the permutation is represented in one line notation); n>=2, 0<=k<=n-2.
Original entry on oeis.org
1, 6, 3, 36, 24, 12, 240, 180, 120, 60, 1800, 1440, 1080, 720, 360, 15120, 12600, 10080, 7560, 5040, 2520, 141120, 120960, 100800, 80640, 60480, 40320, 20160, 1451520, 1270080, 1088640, 907200, 725760, 544320, 362880, 181440, 16329600, 14515200, 12700800, 10886400, 9072000, 7257600, 5443200, 3628800, 1814400
Offset: 2
T(3,1) = 3 because from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have respectively 3 inversion pairs (1,2), (2,3) and (1,3) which are all separated by 1 element.
Triangle T(n,k) begins:
1;
6, 3;
36, 24, 12;
240, 180, 120, 60;
1800, 1440, 1080, 720, 360;
15120, 12600, 10080, 7560, 5040, 2520;
141120, 120960, 100800, 80640, 60480, 40320, 20160;
...
-
nn=10;Range[0,nn]!CoefficientList[Series[x^2/2/(1-x)^2/(1-y x),{x,0,nn}],{x,y}]//Grid
A361893
Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 2;
[3] 0, 3, 12, 6;
[4] 0, 4, 36, 72, 24;
[5] 0, 5, 80, 360, 480, 120;
[6] 0, 6, 150, 1200, 3600, 3600, 720;
[7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040;
[8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320;
[9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
-
A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
seq(seq(A361893(n,k), k = 0..n), n = 0..9);
# Using the egf.:
egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);
Showing 1-4 of 4 results.
Comments