cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055302 Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1

Views

Author

Christian G. Bower, May 11 2000

Keywords

Comments

Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014

Examples

			Triangle begins
     1,
     2,     0;
     6,     3,     0;
    24,    36,     4,     0;
   120,   360,   140,     5,    0;
   720,  3600,  3000,   450,    6, 0;
  5040, 37800, 54600, 18900, 1302, 7, 0;
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.

Crossrefs

Row sums give A000169. Columns 1 through 12: A000142, A055303-A055313. Cf. A055314.
Cf. A248120 for a natural refinement.

Programs

  • Maple
    T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 13 2013
  • Mathematica
    Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid  (* Geoffrey Critzer, Dec 01 2012 *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014

A055349 Triangle of labeled mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 8, 0, 120, 360, 220, 30, 0, 720, 3600, 4200, 1500, 144, 0, 5040, 37800, 71400, 47250, 11508, 840, 0, 40320, 423360, 1176000, 1234800, 545664, 98784, 5760, 0, 362880, 5080320, 19474560, 29635200, 20469456, 6618528, 940896, 45360, 0
Offset: 1

Views

Author

Christian G. Bower, May 15 2000

Keywords

Examples

			Triangle begins:
     1;
     2,     0;
     6,     3,     0;
    24,    36,     8,     0;
   120,   360,   220,    30,     0;
   720,  3600,  4200,  1500,   144,   0;
  5040, 37800, 71400, 47250, 11508, 840, 0;
  ...
		

Crossrefs

Row sums give A038037.

Programs

  • Mathematica
    T[rows_] := {{1}}~Join~((cc = CoefficientList[#, y]; Append[Rest[cc], 0] * Length[cc]!)& /@ (CoefficientList[InverseSeries[x/(y-Log[1-x + O[x]^rows] ), x], x][[3;;]]));
    T[9] // Flatten (* Jean-François Alcover, Oct 31 2019 *)
  • PARI
    A(n)={my(v=Vec(serlaplace(serreverse(x/(y - log(1-x + O(x^n))))))); vector(#v, i, Vecrev(v[i]/y, i))}
    { my(T=A(10)); for(i=1, #T, print(T[i])) } \\ Andrew Howroyd, Sep 23 2018

Formula

E.g.f. satisfies A(x, y) = x*y - x*log(1-A(x, y)). [Corrected by Sean A. Irvine, Mar 19 2022]

A202363 Triangular array read by rows: T(n,k) is the number of inversion pairs ( p(i) < p(j) with i>j ) that are separated by exactly k elements in all n-permutations (where the permutation is represented in one line notation); n>=2, 0<=k<=n-2.

Original entry on oeis.org

1, 6, 3, 36, 24, 12, 240, 180, 120, 60, 1800, 1440, 1080, 720, 360, 15120, 12600, 10080, 7560, 5040, 2520, 141120, 120960, 100800, 80640, 60480, 40320, 20160, 1451520, 1270080, 1088640, 907200, 725760, 544320, 362880, 181440, 16329600, 14515200, 12700800, 10886400, 9072000, 7257600, 5443200, 3628800, 1814400
Offset: 2

Views

Author

Geoffrey Critzer, Jan 09 2013

Keywords

Comments

Row sums = A001809.
Column for k = 0 is A001286.

Examples

			T(3,1) = 3 because from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have respectively 3 inversion pairs (1,2), (2,3) and (1,3) which are all separated by 1 element.
Triangle T(n,k) begins:
       1;
       6,      3;
      36,     24,     12;
     240,    180,    120,    60;
    1800,   1440,   1080,   720,   360;
   15120,  12600,  10080,  7560,  5040,  2520;
  141120, 120960, 100800, 80640, 60480, 40320, 20160;
  ...
		

Crossrefs

Programs

  • Mathematica
    nn=10;Range[0,nn]!CoefficientList[Series[x^2/2/(1-x)^2/(1-y x),{x,0,nn}],{x,y}]//Grid

Formula

E.g.f.: x^2/2 * (1/(1-x)^2)* (1/(1-y*x)).

A361893 Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0

Views

Author

Peter Luschny, Mar 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 2,   2;
  [3] 0, 3,  12,     6;
  [4] 0, 4,  36,    72,     24;
  [5] 0, 5,  80,   360,    480,     120;
  [6] 0, 6, 150,  1200,   3600,    3600,     720;
  [7] 0, 7, 252,  3150,  16800,   37800,   30240,    5040;
  [8] 0, 8, 392,  7056,  58800,  235200,  423360,  282240,   40320;
  [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
		

Crossrefs

Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379.

Programs

  • Maple
    A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
    seq(seq(A361893(n,k), k = 0..n), n = 0..9);
    # Using the egf.:
    egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
    poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
    row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);

Formula

T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1).
T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k).
T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))).
Showing 1-4 of 4 results.