cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A055340 Triangle read by rows: number of mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 16, 5, 1, 0, 1, 12, 37, 46, 25, 6, 1, 0, 1, 16, 66, 118, 96, 40, 7, 1, 0, 1, 20, 110, 260, 300, 184, 56, 8, 1, 0, 1, 25, 172, 527, 811, 688, 318, 80, 9, 1, 0, 1, 30, 257, 985, 1951, 2178, 1408, 524, 105, 10, 1, 0
Offset: 1

Views

Author

Christian G. Bower, May 14 2000

Keywords

Examples

			G.f. = x^(y + x*y + x^2*(y + y^2) + x^3*(y + 2*y^2 + y^3) + x^4*(y + 4*y^2 + 3*y^3 + y^4) + ...).
n\k 1  2  3  4  5  6  7  8
--:-- -- -- -- -- -- -- --
1:  1
2:  1  0
3:  1  1  0
4:  1  2  1  0
5:  1  4  3  1  0
6:  1  6  8  4  1  0
7:  1  9 19 16  5  1  0
8:  1 12 37 46 25  6  1  0
		

Crossrefs

Row sums give A032200.
Columns 2..8 are A002620(n-1), A055341, A055342, A055343, A055344, A055345, A055346.

Programs

  • Mathematica
    m = 13; A[, ] = 0;
    Do[A[x_, y_] = x (y - Sum[EulerPhi[i]/i Log[1 - A[x^i, y^i]], {i, 1, m}]) + O[x]^m + O[y]^m // Normal, {m}];
    Join[{1}, Append[CoefficientList[#/y, y], 0]& /@ Rest @ CoefficientList[ A[x, y]/x, x]] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*y - x*sum(i=1, j, eulerphi(i)/i * log(1 - subst( subst( A + x * O(x^min(j, n\i)), x, x^i), y, y^i) ) )); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */

Formula

G.f. satisfies A(x, y)=xy+x*CIK(A(x, y))-x. Shifts up under CIK transform.
G.f. satisfies A(x, y) = x*(y - Sum_{i>0} phi(i)/i * log(1 - A(x^i, y^i))). - Michael Somos, Aug 24 2015
Sum_k T(n, k) = A032200(n). - Michael Somos, Aug 24 2015

A055356 Triangle of increasing mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 18, 6, 0, 1, 26, 98, 96, 24, 0, 1, 57, 424, 874, 600, 120, 0, 1, 120, 1614, 6040, 8244, 4320, 720, 0, 1, 247, 5682, 35458, 83500, 83628, 35280, 5040, 0, 1, 502, 19022, 187288, 701164, 1169768, 915984, 322560, 40320, 0, 1
Offset: 1

Views

Author

Christian G. Bower, May 15 2000

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
Also related to the solution of the equation df/dt=f e^f (see the Maple code). - F. Chapoton, Jul 16 2004

Examples

			Triangle begins
  1;
  1,  0;
  1,  1,   0;
  1,  4,   2,   0;
  1, 11,  18,   6,   0;
  1, 26,  98,  96,  24,   0;
  1, 57, 424, 874, 600, 120, 0;
  ...
		

Crossrefs

Row sums give A029768 (p(n,1)).
Alternating row sums give A089963 (p(n+1,-1)).

Programs

  • Maple
    P[1]:=1;for n from 1 to 8 do P[n+1]:=simplify((1+n*x)*P[n]+x*diff(P[n],x)) end; # F. Chapoton, Jul 16 2004
  • Mathematica
    P[1][_] = 1;
    P[n_][x_] := P[n][x] = (1 + (n-1) x) P[n-1][x] + x P[n-1]'[x] // Expand;
    row[1] = {1};
    row[n_] := Append[CoefficientList[P[n-1][x], x], 0];
    Array[row, 10] // Flatten (* Jean-François Alcover, Nov 17 2018, after F. Chapoton *)
  • PARI
    A(n)={my(v=vector(n)); v[1]=y; for(n=2, #v, v[n]=v[n-1] + sum(k=1, n-2, binomial(n-2, k)*v[k]*v[n-k])); vector(#v, i, Vecrev(v[i]/y, i))}
    { my(T=A(10)); for(i=1, #T, print(T[i])) } \\ Andrew Howroyd, Sep 23 2018

Formula

Let p(n,x) be the polynomial with coefficients equal to the n-th row of the triangle in ascending powers of x, e.g., p(4,x) = 1+4*x+2*x^2; then p(n+1,x) = (1+(n-1)*x)*p(n,x) + x*p'(n,x). - Ben Whitmore, May 12 2021
Recurrence: T(n,k) = (n-2) * T(n-1,k-1) + k * T(n-1,k) for n >= 1, 1 <= k <= n with T(1,1) = 1 and T(n,k) = 0 for n < 1, k < 1 or k > n. - Georg Fischer, Oct 27 2021
Conjecture: row polynomials are R(n-2,0) for n > 1 where R(n,k) = R(n-1,k+1) + x*Sum_{i=0..n-1} Sum_{j=0..k} binomial(n-1, i)*R(n-i-1,j)*R(i,k-j) for n > 0, k >= 0 with R(0,k) = 1 for k >= 0. - Mikhail Kurkov, Apr 11 2025

A055363 Triangle of asymmetric mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 6, 10, 5, 1, 0, 0, 1, 9, 22, 19, 7, 1, 0, 0, 1, 12, 42, 53, 31, 8, 1, 0, 0, 1, 16, 73, 130, 109, 45, 10, 1, 0, 0, 1, 20, 119, 280, 321, 190, 63, 11, 1, 0, 0, 1, 25, 184, 556, 833, 672, 310, 83, 13, 1, 0, 0, 1, 30, 272
Offset: 1

Views

Author

Christian G. Bower, May 15 2000

Keywords

Examples

			G.f. = x*(y + x*y + x^2*y + x^3*(y + y^2) + x^4*(y + 2*y^2 + y^3) + x^5*(y + 4*y^2 + 4*y^3 + y^4) + ...).
n\k 1  2  3  4  5  6  7  8
--:-- -- -- -- -- -- -- --
1:  1
2:  1  0
3:  1  0  0
4:  1  1  0  0
5:  1  2  1  0  0
6:  1  4  4  1  0  0
7:  1  6 10  5  1  0  0
8:  1  9 22 19  7  1  0  0
		

Crossrefs

Row sums give A032171.

Programs

  • Mathematica
    T[n_, k_] := Module[{A}, A[, ] = 0; If[k<1 || k>n, 0, For[j=1, j <= n, j++, A[x_, y_] = x*y-x*Sum[MoebiusMu[i]/i * Log[1 - A[x^i, y^i]] + O[x]^j // Normal, {i, 1, j}]]; Coefficient[Coefficient[A[x, y], x, n], y, k]]];
    Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 30 2017, after Michael Somos *)
  • PARI
    {T(n, k) = my(A = O(x)); if(k<1 || k>n, 0, for(j=1, n, A = x*y - x*sum(i=1, j, moebius(i)/i * log(1 - subst( subst( A + x * O(x^min(j, n\i)), x, x^i), y, y^i) ) )); polcoeff( polcoeff(A, n), k))}; /* Michael Somos, Aug 24 2015 */

Formula

G.f. satisfies A(x, y) = x*(y - Sum_{i>0} moebius(i)/i * log(1 - A(x^i, y^i))). - Michael Somos, Aug 19 2015
Sum_k T(n, k) = A032171(n). - Michael Somos, Aug 24 2015

A038037 Number of labeled rooted compound windmills (mobiles) with n nodes.

Original entry on oeis.org

1, 2, 9, 68, 730, 10164, 173838, 3524688, 82627200, 2198295360, 65431163160, 2154106470240, 77714083773456, 3048821300491680, 129221979665461200, 5884296038166954240, 286492923374605966080, 14851359950834255500800
Offset: 1

Views

Author

Christian G. Bower, Sep 15 1998

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.83).

Crossrefs

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: b:= logtr(-a): a:= n-> `if`(n<=1,1, -n*b(n-1)): seq(a(n), n=1..25); # Alois P. Heinz, Sep 14 2008
  • Mathematica
    a[n_] = Sum[Binomial[n, j]*Abs[StirlingS1[n-1, j]]*j!, {j, 0, n}]; Array[a, 18]
    (* Jean-François Alcover, Jun 22 2011, after Vladimir Kruchinin *)
  • PARI
    Vec(serlaplace(serreverse(x/(1 - log(1-x + O(x^20)))))) \\ Andrew Howroyd, Sep 19 2018

Formula

Divides by n and shifts left under "CIJ" (necklace, indistinct, labeled) transform.
E.g.f. A(x) satisfies A(x) = x-x*log(1-A(x)). [Corrected by Andrey Zabolotskiy, Sep 16 2022]
a(n) = Sum_{j=0..n} binomial(n,j)*abs(Stirling1(n-1,j))*j!, n > 0. - Vladimir Kruchinin, Feb 03 2011
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^(n-1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
E.g.f.: series reversion of x/(1 - log(1-x)). - Andrew Howroyd, Sep 19 2018

A055350 Number of labeled mobiles (circular rooted trees) with n nodes and 3 leaves.

Original entry on oeis.org

8, 220, 4200, 71400, 1176000, 19474560, 330220800, 5787936000, 105380352000, 1997835840000, 39477236198400, 813155511168000, 17453093898240000, 390070546145280000, 9070029416448000000, 219204470936715264000
Offset: 4

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 3 of A055349.

Programs

  • Mathematica
    m = 20;
    L[x_] = Log[1-x] + O[x]^m // Normal;
    A[_] = 0;
    Do[A[x_] = x y - x L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 3}]& /@ CoefficientList[A[x], x]) * Range[0, m-1]!, 4] (* Jean-François Alcover, Nov 01 2019 *)

A055351 Number of labeled mobiles (circular rooted trees) with n nodes and 4 leaves.

Original entry on oeis.org

30, 1500, 47250, 1234800, 29635200, 685843200, 15717240000, 362244960000, 8476532064000, 202580554176000, 4963223577312000, 124948285862400000, 3236755595673600000, 86346680044584960000, 2372991796225290240000
Offset: 5

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 4 of A055349.

Programs

  • Mathematica
    m = 20; L[x_] = Log[1 - x] + O[x]^m // Normal; A[_] = 0;
    Do[A[x_] = x y - x  L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 4}] & /@ CoefficientList[A[x], x]) * Range[0, m - 1]!, 5] (* Jean-François Alcover, Nov 01 2019 *)

A055352 Number of labeled mobiles (circular rooted trees) with n nodes and 5 leaves.

Original entry on oeis.org

144, 11508, 545664, 20469456, 678857760, 21047130720, 629779328640, 18547337128320, 544474197146880, 16067754570067200, 479436489384652800, 14522782898521497600, 447847214484186316800, 14087092606079728435200
Offset: 6

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 5 of A055349.

Programs

  • Mathematica
    m = 20; L[x_] = Log[1 - x] + O[x]^m // Normal; A[_] = 0;
    Do[A[x_] = x y - x L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 5}] & /@ CoefficientList[A[x], x]) * Range[0, m - 1]!, 6] (* Jean-François Alcover, Nov 01 2019 *)

A055353 Number of labeled mobiles (circular rooted trees) with n nodes and 6 leaves.

Original entry on oeis.org

840, 98784, 6618528, 339111360, 14931378000, 600119150400, 22811289621120, 838683494288640, 30275663821603200, 1084273458428160000, 38808699592126464000, 1395650171787308236800, 50626461643690886553600
Offset: 7

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 6 of A055349.

Programs

  • Mathematica
    m = 20; L[x_] = Log[1 - x] + O[x]^m // Normal; A[_] = 0;
    Do[A[x_] = x y - x L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 6}] & /@ CoefficientList[A[x], x]) * Range[0, m - 1]!, 7] (* Jean-François Alcover, Nov 01 2019 *)

A055354 Number of labeled mobiles (circular rooted trees) with n nodes and 7 leaves.

Original entry on oeis.org

5760, 940896, 85049280, 5731545600, 324745027200, 16481262283200, 778208622871680, 35036455255401600, 1529404526377728000, 65498410076875776000, 2775672164602681344000, 117137057625636739891200
Offset: 8

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 7 of A055349.

Programs

  • Mathematica
    m = 20; L[x_] = Log[1 - x] + O[x]^m // Normal; A[_] = 0;
    Do[A[x_] = x y - x  L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 7}] & /@ CoefficientList[A[x], x]) * Range[0, m - 1]!, 8] (* Jean-François Alcover, Nov 01 2019 *)

A055355 Number of labeled mobiles (circular rooted trees) with n nodes and 8 leaves.

Original entry on oeis.org

45360, 9862560, 1160973000, 99904860000, 7103580541200, 445556635524000, 25652184715357200, 1391455702596960000, 72404516222438400000, 3661224054771419136000, 181631020686490222848000
Offset: 9

Views

Author

Christian G. Bower, May 15 2000

Keywords

Crossrefs

Column 8 of A055349.

Programs

  • Mathematica
    m = 20; L[x_] = Log[1 - x] + O[x]^m // Normal; A[_] = 0;
    Do[A[x_] = x y - x  L[A[x]] + O[x]^k // Normal // Expand, {k, m}];
    Drop[(SeriesCoefficient[#, {y, 0, 8}] & /@ CoefficientList[A[x], x]) * Range[0, m - 1]!, 9] (* Jean-François Alcover, Nov 01 2019 *)
Showing 1-10 of 10 results.