cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A138013 E.g.f. satisfies: A(x) = 1 - log(1 - x*A(x)).

Original entry on oeis.org

1, 1, 3, 17, 146, 1694, 24834, 440586, 9180800, 219829536, 5948287560, 179508872520, 5978006444112, 217772950035120, 8614798644364080, 367768502385434640, 16852524904388586240, 825075552824125305600, 42981992589364756939008, 2373967488394457834095872
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2008

Keywords

Comments

a(n) = A038037(n+1)/(n+1) for n>=0 where A038037(n) is the number of labeled rooted compound windmills (mobiles) with n nodes.

Examples

			E.g.f.: A(x) = 1 + x + 3x^2/2! + 17x^3/3! + 146x^4/4! + 1694x^5/5! + ...
where A(x) = 1 - log(1 - x*A(x)):
A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/3 +...+ x^n*A(x)^n/n +...
		

Crossrefs

Cf. A038037.

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[(1-E^(-x))/(1+x), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
  • PARI
    {a(n)=n!*polcoeff(1/x*serreverse(x/(1-log(1-x + x*O(x^n) ))),n+1)}
    
  • PARI
    {a(n)=n!*polcoeff(1 + serreverse((1-exp(-x+x^2*O(x^n)))/(1+x +x*O(x^n))),n)}

Formula

E.g.f.: A(x) = (1/x)*Series_Reversion[ x/(1 - log(1-x)) ].
E.g.f.: A(x) = 1 + Series_Reversion( (1-exp(-x))/(1+x) ).
E.g.f. A(x) satisfies: exp(1 - A(x)) = 1 - x*A(x).
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^n * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(n!/(n+1-k)! * |stirling1(n,k)|, k=0..n). - Michael D. Weiner, Dec 23 2014

A029768 Number of increasing mobiles with n elements.

Original entry on oeis.org

0, 1, 1, 2, 7, 36, 245, 2076, 21059, 248836, 3356609, 50896380, 856958911, 15864014388, 320245960333, 7001257954796, 164792092647355, 4154906594518116, 111719929072986521, 3191216673497748444
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

A labeled tree of size n is a rooted tree on n nodes that are labeled by distinct integers from the set {1,...,n}. An increasing tree is a labeled tree such that the sequence of labels along any branch starting at the root is increasing.
a(n) counts increasing trees with cyclically ordered branches.
a(n+1) counts the non-plane (where the subtrees stemming from a node are not ordered between themselves) increasing trees on n nodes where the nodes of outdegree k come in k+1 colors. An example is given below. The number of plane increasing trees on n nodes where the nodes of outdegree k come in k+1 colors is given by the triple factorial numbers A008544. - Peter Bala, Aug 30 2011
a(n+1)/a(n)/n tends to 1/A073003 = 1.676875... . - Vaclav Kotesovec, Mar 11 2014

Examples

			a(4) = 7: D^2[(1+x)*exp(x)] = exp(2*x)*(2*x^2+8*x+7). Evaluated at x = 0 this gives a(4) = 7. Denote the colors of the nodes by the letters a,b,c,.... The 7 possible trees on 3 nodes with nodes of outdegree k coming in k+1 colors are:
........................................................
...1a....1b....1a....1b........1a.......1b........1c....
...|.....|.....|.....|......../.\....../..\....../..\...
...2a....2b....2b....2a......2...3....2....3....2....3..
...|.....|.....|.....|..................................
...3.....3.....3.....3..................................
G.f. = x + x^2 + 2*x^3 + 7*x^4 + 36*x^5 + 245*x^6 + 2076*x^7 + 21059*x^8 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 392.

Crossrefs

Programs

  • Maple
    S:= rhs(dsolve({diff(a(x),x) = log(1/(1-a(x)))+1,a(0)=0},a(x),series,order=101)):
    seq(coeff(S,x,j)*j!,j=0..100); # Robert Israel, Apr 17 2015
  • Mathematica
    Multinomial1[list_] := Apply[Plus, list]!/Apply[Times, (#1! & ) /@ list]; a[1]=1; a[n_]/;n>=2 := a[n] = Sum[Map[Multinomial1[ # ]Product[Map[a,# ]]/Length[ # ]&,Compositions[n-1]]]; Table[a[n],{n,8}] (* David Callan, Nov 29 2007 *)
    nmax=20; b = ConstantArray[0,nmax]; b[[1]]=0; b[[2]]=1; Do[b[[n+1]] = b[[n]] + Sum[Binomial[n-2,i]*b[[i+1]]*b[[n-i+1]],{i,1,n-2}],{n,2,nmax-1}]; b (* Vaclav Kotesovec after Vladimir Kruchinin, Mar 11 2014 *)
    terms = 20; A[x_] := x; Do[A[x_] = Integrate[(1 + A[x])*Exp[A[x] + O[x]^j], x] + O[x]^j // Normal // Simplify, {j, 1, terms - 1}]; Join[{0, 1}, CoefficientList[A[x], x]*Range[0, terms - 2]! // Rest] (* Jean-François Alcover, May 22 2014, updated Jan 12 2018 (after PARI script by Michael Somos) *)
  • PARI
    {a(n) = my(A = x + O(x^2)); if( n<2, n==1, n--; for(k=1, n-1, A = intformal( (1 + A) * exp(A)));  n! * polcoeff(A, n))}; /* Michael Somos, Apr 17 2015 */
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n = 2, N, a[n] = a[n-1] + sum(k=1, n-2, binomial(n-2, k)*a[k]*a[n-k]));
      concat(0, a);
    };
    seq(19)
    \\ test: N=200; y=serconvol(Ser(seq(N),'x), exp('x+O('x^N))); y' == y''*(1-y)
    \\ Gheorghe Coserea, Jun 26 2018

Formula

Bergeron et al. give several formulas. Shifts left under "CIJ" (necklace, indistinct, labeled) transform.
E.g.f.: A(x) =
x + (1/2)*x^2 + (1/3)*x^3 + (7/24)*x^4 + (3/10)*x^5 + (49/144)*x^6 + (173/420)*x^7 + (21059/40320)*x^8 + (8887/12960)*x^9 + ...
and satisfies the differential equation A'(x)=log(1/(1-A(x)))+1. - Vladimir Kruchinin, Jan 22 2011
E.g.f. A(x) satisfies: A''(x) = A'(x) * exp(A'(x)-1). - Paul D. Hanna, Apr 17 2015
From Robert Israel, Apr 17 2015 (Start):
E.g.f. A(x) satisfies e*(Ei(1,A'(x)) - Ei(1,1)) = integral(s = 1 .. A'(x), exp(1-s)/s ds) = -x.
a(n) = e^(1-n)*limit(w -> 1, (d^(n-2)/dw^(n-2))(((w-1)/(Ei(1,1)-Ei(1,w)))^(n-1))) for n >= 2. (End)
a(n) = sum(i=1..n-2,binomial(n-2,i)*a(i)*a(n-i))+a(n-1), a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 24 2011
The following remarks refer to the interpretation of this sequence as counting increasing trees where the nodes of outdegree k come in k+1 colors. Thus we work with the generating function B(x) = A'(x)-1 = x + 2*x^2/2!+7*x^3/3!+36*x^4/4!+.... The degree function phi(x) (see [Bergeron et al.] for definition) for this variety of trees is phi(x) = 1+2*x+3*x^2/2!+4*x^3/3!+5*x^4/4!+... = (1+x)*exp(x). The generating function B(x) satisfies the autonomous differential equation B' = phi(B(x)) with initial condition B(0) = 0. It follows that the inverse function B(x)^(-1) may be expressed as an integral B(x)^(-1) = int {t = 0..x} 1/phi(t) dt = int {t = 0..x} exp(-t)/(1+t) dt. Applying [Dominici, Theorem 4.1] to invert the integral produces the result B(x) = sum {n>=1} D^(n-1)[(1+x)*exp(x)](0)*x^n/n!, where the nested derivative D^n[f](x) of a function f(x) is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Thus a(n+1) = D^(n-1)[(1+x)*exp(x)](0). - Peter Bala, Aug 30 2011

Extensions

More terms from Christian G. Bower

A032200 Number of rooted compound windmills (mobiles) of n nodes.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 51, 128, 345, 940, 2632, 7450, 21434, 62174, 182146, 537369, 1596133, 4767379, 14312919, 43162856, 130695821, 397184252, 1211057426, 3703794849, 11358759346, 34923477315, 107627138308, 332404636811
Offset: 1

Views

Author

Keywords

Comments

Also the number of locally necklace plane trees with n nodes, where a plane tree is locally necklace if the sequence of branches directly under any given node is lexicographically minimal among its cyclic permutations. - Gus Wiseman, Sep 05 2018

Examples

			From _Gus Wiseman_, Sep 05 2018: (Start)
The a(5) = 9 locally necklace plane trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  (o((o)))
  ((o)(o))
  ((ooo))
  (o(oo))
  (oo(o))
  (oooo)
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[neckplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018

Formula

Shifts left under "CIK" (necklace, indistinct, unlabeled) transform.

A055349 Triangle of labeled mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 8, 0, 120, 360, 220, 30, 0, 720, 3600, 4200, 1500, 144, 0, 5040, 37800, 71400, 47250, 11508, 840, 0, 40320, 423360, 1176000, 1234800, 545664, 98784, 5760, 0, 362880, 5080320, 19474560, 29635200, 20469456, 6618528, 940896, 45360, 0
Offset: 1

Views

Author

Christian G. Bower, May 15 2000

Keywords

Examples

			Triangle begins:
     1;
     2,     0;
     6,     3,     0;
    24,    36,     8,     0;
   120,   360,   220,    30,     0;
   720,  3600,  4200,  1500,   144,   0;
  5040, 37800, 71400, 47250, 11508, 840, 0;
  ...
		

Crossrefs

Row sums give A038037.

Programs

  • Mathematica
    T[rows_] := {{1}}~Join~((cc = CoefficientList[#, y]; Append[Rest[cc], 0] * Length[cc]!)& /@ (CoefficientList[InverseSeries[x/(y-Log[1-x + O[x]^rows] ), x], x][[3;;]]));
    T[9] // Flatten (* Jean-François Alcover, Oct 31 2019 *)
  • PARI
    A(n)={my(v=Vec(serlaplace(serreverse(x/(y - log(1-x + O(x^n))))))); vector(#v, i, Vecrev(v[i]/y, i))}
    { my(T=A(10)); for(i=1, #T, print(T[i])) } \\ Andrew Howroyd, Sep 23 2018

Formula

E.g.f. satisfies A(x, y) = x*y - x*log(1-A(x, y)). [Corrected by Sean A. Irvine, Mar 19 2022]

A177380 E.g.f. satisfies: A(x) = 1+x + x*log(A(x)).

Original entry on oeis.org

1, 1, 2, 3, -4, -50, -36, 2058, 10800, -131616, -1975680, 7741800, 417480480, 1307617584, -101626746144, -1284067345680, 25419094122240, 791333924647680, -3900043588999680, -472446912421801728, -3183064994777932800
Offset: 0

Views

Author

Paul D. Hanna, May 14 2010

Keywords

Comments

The signs have a complex structure; are they periodic after some point?

Examples

			E.g.f: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 4*x^4/4! - 50*x^5/5! +...
log(A(x)) = 2*x/2! + 3*x^2/3! - 4*x^3/4! - 50*x^4/5! - 36*x^5/5! +...
...
Coefficients in the initial powers of A(x) begin:
[1,(1),(1), 1/2, -1/6, -5/12, -1/20, 49/120, 15/56, -457/1260,...];
[1, 2,(3),(3), 5/3, -1/6, -61/60, -17/60, 272/315, 451/630,...];
[1, 3, 6,(17/2),(17/2), 21/4, 3/5, -83/40, -187/168, 115/84,...];
[1, 4, 10, 18,(73/3),(73/3), 163/10, 131/30, -261/70, -1093/315,...];
[1, 5, 15, 65/2, 325/6,(847/12),(847/12), 1205/24, 9551/504,...];
[1, 6, 21, 53, 104, 327/2,(4139/20),(4139/20), 6469/42, 7414/105,...];
[1, 7, 28, 161/2, 1085/6, 3955/12, 4949/10,(24477/40),(24477/40),...];
[1, 8, 36, 116, 878/3, 1810/3, 15569/15, 7509/5,(114760/63),(114760/63), ...]; ...
where the coefficients in parenthesis illustrate the property
that the coefficients of x^n and x^(n+1) in A(x)^n are equal:
[x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)!,
where G(x) = e.g.f. of A138013 begins:
G(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! + 1694*x^5/5! + ...
and satisfies: exp(1 - G(x)) = 1 - x*G(x).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1+InverseSeries[Series[x/(1 + Log[1+x]), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 11 2014 *)
  • PARI
    {a(n)=n!*polcoeff(1+serreverse(x/(1+log(1+x+x*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x+x*log(A+O(x^n)));n!*polcoeff(A,n)}

Formula

E.g.f.: A(x) = 1 + Series_Reversion( x/(1 + log(1+x)) ).
...
Let G(x) = e.g.f. of A138013, then G(x) and A(x) satisfy:
(1) [x^n] A(x)^n = [x^(n+1)] A(x)^n = A138013(n)/(n-1)! for n>=1;
(2) A(x/(1 - x*G(x))) = 1/(1 - x*G(x));
(3) G(x) = 1 - log(1 - x*G(x)) = Series_Reversion(x/(1-log(1-x)))/x.
...
Let F(x) = e.g.f. of A177379, then F(x) and A(x) satisfy:
(4) [x^n] A(x)^(n+1)/(n+1) = A177379(n)/n! for n>=0;
(5) A(x*F(x)) = F(x) and F(x/A(x)) = A(x);
(6) F(x) = 1/(1 - x*G(x)) = 1/(1 - Series_Reversion(x/(1-log(1-x)))).
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.3745570107437... (see A238274). - Vaclav Kotesovec, Jan 11 2014

A108527 Number of labeled mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • Mathematica
    nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
  • PARI
    {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014

Formula

E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - Vaclav Kotesovec, Mar 28 2014

A242769 Decimal expansion of the positive solution to the equation x/(1-x) = 1+log(1/(1-x)), an auxiliary constant associated with the problem of enumeration of trees by inversions.

Original entry on oeis.org

6, 8, 2, 1, 5, 5, 5, 6, 7, 1, 0, 0, 6, 2, 7, 3, 1, 6, 1, 6, 7, 1, 5, 5, 2, 6, 2, 3, 7, 9, 0, 5, 0, 8, 3, 3, 0, 0, 3, 8, 6, 8, 1, 0, 0, 0, 1, 6, 8, 8, 8, 5, 9, 9, 1, 0, 9, 0, 6, 5, 5, 1, 0, 1, 3, 4, 2, 2, 0, 8, 6, 2, 6, 5, 8, 2, 1, 7, 7, 1, 5, 9, 8, 1, 1, 4, 8, 8, 6, 8, 9, 0, 5, 4, 5, 3, 9, 9, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, May 22 2014

Keywords

Examples

			0.6821555671006273161671552623790508330038681...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6, p. 303.

Crossrefs

Cf. A038037.

Programs

  • Mathematica
    mu = x /. FindRoot[x/(1-x) == 1+Log[1/(1-x)], {x, 1/2}, WorkingPrecision -> 105]; RealDigits[mu, 10, 100] // First

A174632 Partial sums of A029768.

Original entry on oeis.org

0, 1, 2, 4, 11, 47, 292, 2368, 23427, 272263, 3628872, 54525252, 911484163, 16775498551, 337021458884, 7338279413680, 172130372061035, 4327036966579151, 116046966039565672, 3307263639537314116
Offset: 0

Views

Author

Jonathan Vos Post, Mar 24 2010

Keywords

Comments

Partial sums of number of increasing mobiles with n elements. In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root. The subsequence of primes in this partial sum begins: 2, 11, 47, 272263.

Examples

			a(x) = 0 + 1 + 1 + 2 + 7 + 36 + 245 + 2076 + 21059 + 248836 = 272263 is prime.
		

Crossrefs

Programs

  • Maple
    S:= rhs(dsolve({diff(a(x), x) = log(1/(1-a(x)))+1, a(0)=0}, a(x), series, order=31)):
    L:= [seq(coeff(S, x, j)*j!, j=0..30)]:
    ListTools:-PartialSums(L); # Robert Israel, Dec 21 2017

Formula

a(n) = SUM[i=o..n] A029768(i).

A243395 Decimal expansion of 'xiHat', a constant used in the asymptotic evaluation of e.g.f. coefficients for the number of labeled mobiles.

Original entry on oeis.org

1, 1, 5, 7, 4, 1, 9, 8, 0, 3, 8, 1, 9, 2, 8, 0, 2, 6, 4, 4, 8, 2, 6, 3, 5, 4, 5, 0, 8, 4, 0, 9, 4, 6, 2, 5, 4, 6, 8, 6, 4, 2, 8, 6, 2, 7, 9, 7, 0, 4, 1, 9, 4, 1, 3, 4, 2, 2, 0, 5, 2, 6, 8, 2, 4, 5, 2, 0, 2, 3, 9, 8, 7, 8, 5, 9, 4, 4, 2, 3, 7, 7, 0, 0, 3, 0, 4, 5, 7, 5, 5, 8, 4, 5, 0, 6, 6, 8, 4, 2, 3, 8, 2, 6
Offset: 1

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			1.15741980381928026448263545084...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Programs

  • Mathematica
    digits = 104; mu = x /. FindRoot[x/(1 - x) == 1 + Log[1/(1 - x)], {x, 1/2}, WorkingPrecision -> digits + 5] ; xiHat = E^-1*(1 - mu)^-1; RealDigits[xiHat, 10, digits] // First

Formula

A038037 = Numerator of n-th coefficient ~ etaHat * xiHat^n * n^(n-1), where etaHat is A243396.

A243396 Decimal expansion of 'etaHat', a constant used in the asymptotic evaluation of e.g.f. coefficients for the number of labeled mobiles.

Original entry on oeis.org

4, 6, 5, 6, 3, 8, 6, 4, 6, 7, 7, 9, 0, 7, 5, 7, 3, 7, 1, 0, 9, 9, 7, 5, 9, 1, 0, 2, 6, 4, 2, 9, 0, 5, 7, 4, 6, 3, 2, 5, 5, 0, 1, 4, 6, 1, 7, 4, 3, 4, 8, 3, 8, 9, 3, 5, 6, 0, 0, 9, 9, 0, 1, 9, 1, 7, 6, 5, 1, 3, 9, 2, 6, 1, 0, 8, 8, 0, 4, 7, 7, 5, 6, 9, 3, 4, 0, 6, 6, 6, 1, 8, 9, 8, 4, 9, 7, 3, 8, 8, 6, 1, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			0.46563864677907573710997591026429...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Programs

  • Mathematica
    digits = 104; mu = x /. FindRoot[x/(1 - x) == 1 + Log[1/(1 - x)], {x, 1/2}, WorkingPrecision -> digits + 5] ; etaHat = Sqrt[mu*(1 - mu)]; RealDigits[etaHat, 10, digits] // First

Formula

A038037 = Numerator of n-th coefficient ~ etaHat * xiHat^n * n^(n-1), where xiHat is A243395.
Showing 1-10 of 10 results.