A138013 E.g.f. satisfies: A(x) = 1 - log(1 - x*A(x)).
1, 1, 3, 17, 146, 1694, 24834, 440586, 9180800, 219829536, 5948287560, 179508872520, 5978006444112, 217772950035120, 8614798644364080, 367768502385434640, 16852524904388586240, 825075552824125305600, 42981992589364756939008, 2373967488394457834095872
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3x^2/2! + 17x^3/3! + 146x^4/4! + 1694x^5/5! + ... where A(x) = 1 - log(1 - x*A(x)): A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/3 +...+ x^n*A(x)^n/n +...
Crossrefs
Cf. A038037.
Programs
-
Mathematica
CoefficientList[1 + InverseSeries[Series[(1-E^(-x))/(1+x), {x, 0, 20}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
-
PARI
{a(n)=n!*polcoeff(1/x*serreverse(x/(1-log(1-x + x*O(x^n) ))),n+1)}
-
PARI
{a(n)=n!*polcoeff(1 + serreverse((1-exp(-x+x^2*O(x^n)))/(1+x +x*O(x^n))),n)}
Formula
E.g.f.: A(x) = (1/x)*Series_Reversion[ x/(1 - log(1-x)) ].
E.g.f.: A(x) = 1 + Series_Reversion( (1-exp(-x))/(1+x) ).
E.g.f. A(x) satisfies: exp(1 - A(x)) = 1 - x*A(x).
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^n * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(n!/(n+1-k)! * |stirling1(n,k)|, k=0..n). - Michael D. Weiner, Dec 23 2014
Comments