cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055324 Number of labeled trees with n nodes and 12 leaves.

Original entry on oeis.org

13, 372554, 714236250, 453911421600, 156507084115200, 36555247168352640, 6528715119143118720, 960135043767367104000, 122086105154945279712000, 13885903109630633425344000, 1447862009053077400092710400, 140958354488116955062668595200
Offset: 13

Views

Author

Christian G. Bower, May 11 2000

Keywords

Crossrefs

Column 12 of A055314.

Programs

  • Magma
    [Factorial(n)*(n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000: n in [13..25]]; // Vincenzo Librandi, Jul 25 2014
    
  • Magma
    [(Factorial(n)/Factorial(12))*StirlingSecond(n-2, n-12): n in [13..30]]; // G. C. Greubel, Feb 07 2018
  • Mathematica
    Table[n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000,{n,13,25}] (* Vaclav Kotesovec, Jul 25 2014 *)
    Table[(n!/12!)*StirlingS2[n-2, n-12], {n,13, 30}] (* G. C. Greubel, Feb 07 2018 *)
  • PARI
    for(n=13, 30, print1((n!/12!)*stirling(n-2, n-12, 2), ", ")) \\ G. C. Greubel, Feb 07 2018
    

Formula

a(n) = (n!/12!)*Stirling2(n-2, n-12). - Vladeta Jovovic, Jan 28 2004
a(n) = n! * (n-12)*(n-11)*(n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(99*n^9 - 9207*n^8 + 377586*n^7 - 8955870*n^6 + 135276603*n^5 - 1348112183*n^4 + 8853485696*n^3 - 36897359092*n^2 + 88399944688*n - 92577669120) / 176211865192366080000. - Vaclav Kotesovec, Jul 25 2014

Extensions

Missing a(24) inserted by Andrew Howroyd, Feb 23 2018