A055437 a(n) = 10*n^2+n.
11, 42, 93, 164, 255, 366, 497, 648, 819, 1010, 1221, 1452, 1703, 1974, 2265, 2576, 2907, 3258, 3629, 4020, 4431, 4862, 5313, 5784, 6275, 6786, 7317, 7868, 8439, 9030, 9641, 10272, 10923, 11594, 12285, 12996, 13727, 14478, 15249, 16040, 16851, 17682, 18533
Offset: 1
Examples
From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[10*n^2+n : n in [1..50]]; // Wesley Ivan Hurt, Apr 27 2016
-
Maple
A055437:=n->10*n^2+n: seq(A055437(n), n=1..50); # Wesley Ivan Hurt, Apr 27 2016
-
Mathematica
Table[10 n^2 + n, {n, 50}] (* Wesley Ivan Hurt, Apr 27 2016 *)
-
PARI
a(n)=10*n^2+n \\ Charles R Greathouse IV, Jun 17 2017
Formula
From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
Comments