cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055437 a(n) = 10*n^2+n.

Original entry on oeis.org

11, 42, 93, 164, 255, 366, 497, 648, 819, 1010, 1221, 1452, 1703, 1974, 2265, 2576, 2907, 3258, 3629, 4020, 4431, 4862, 5313, 5784, 6275, 6786, 7317, 7868, 8439, 9030, 9641, 10272, 10923, 11594, 12285, 12996, 13727, 14478, 15249, 16040, 16851, 17682, 18533
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Comments

a(n) = A055436(n) if 1<=n<10.
Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002

Examples

			From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
		

Crossrefs

Programs

Formula

From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = A000217(6*n) - A000217(4*n). - Bruno Berselli, Sep 21 2016