cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A084293 a(n) = 2n + A054905(n).

Original entry on oeis.org

436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).

Examples

			To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
		

Crossrefs

Cf. A054905.

Formula

Composite x satisfying sigma(x-2n) = sigma(x) - 2n.

A056773 Composite n such that phi(n+4) = phi(n)+4.

Original entry on oeis.org

12, 18, 24, 28, 36, 40, 66, 88, 124, 184, 232, 328, 424, 508, 664, 712, 904, 1048, 1384, 1432, 1528, 1864, 1912, 2008, 2248, 2344, 2586, 2872, 3352, 3448, 3544, 3928, 4072, 4744, 5128, 5224, 5272, 5464, 5752, 5944, 6088, 6472, 7288, 7624, 8104, 8152, 8248
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Are all terms even? - Robert Israel, Apr 28 2020

Examples

			24 is in the sequence because 24 is composite and phi(24)+4 = 12 = phi(24+4).
		

Crossrefs

A001838, A015913, A055458. Composites in A056772. Primes in A056772 are A023200.

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-phi(n+4)=numtheory:-phi(n)+4:
    select(filter, [$1..10000]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[9000],CompositeQ[#]&&EulerPhi[#]+4==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 12 2015 *)
  • PARI
    is(n)=!isprime(n) && eulerphi(n+4)==eulerphi(n)+4 \\ Charles R Greathouse IV, Apr 28 2020

Extensions

Edited by Robert Israel, Apr 28 2020

A084292 a(n) = 6n + A054904(n).

Original entry on oeis.org

110, 77, 38, 104, 74, 161, 87, 111, 94, 159, 122, 142, 374, 209, 178, 206, 206, 253, 326, 302, 206, 302, 471, 249, 519, 341, 346, 303, 354, 481, 542, 377, 2057, 533, 386, 411, 5138, 662, 846, 527, 386, 437, 1034, 519, 794, 689, 626, 493, 566, 629, 873, 527, 638
Offset: 1

Views

Author

Labos Elemer, May 26 2003

Keywords

Comments

Composite solutions y to sigma(y-6n) = sigma(y) - 6n. For terms x of A054904, where sigma(x+6n) = sigma(x) + 6n, replacing x+6n = y, x = y-6n, we get sigma(y) - 6n = sigma(y-6n).

Crossrefs

Cf. A000203 (sigma), A054904, A084293.
For several analogous sequences such corresponding "mirror-solutions" can be easily constructed. See, e.g., A015913-A015918, A050507, A054799, A054903-A054906, A054982-A054987, A059118, A055009, A055458, A063500, etc.

A063104 a(0) = 0, a(n) = smallest composite k such that phi(k + 2^n) = phi(k) + 2^n; also cototient(k + 2^n) = cototient(k).

Original entry on oeis.org

0, 6, 12, 24, 39, 84, 69, 75, 213, 1092, 249, 1131, 8736, 13413, 21201, 1275, 2193, 279552, 98337, 968727, 71085, 2783555, 646869, 3145959, 1805781, 5798435, 787605, 27962075, 2073033, 282181709, 1150329, 10380353, 516201, 150807855, 141521295, 860867981
Offset: 0

Views

Author

Labos Elemer, Aug 08 2001

Keywords

Examples

			n=4, a(4)=39, Phi[39]+16=24+16=40=Phi[55]; a(14) = 21201, Phi(21201) + 2^14 = 13680 + 16384 = 30064 = Phi(37585).
		

Crossrefs

Programs

  • Mathematica
    Do[k = 4; While[ PrimeQ[k] || EulerPhi[k + 2^n] != EulerPhi[k] + 2^n, k++ ]; Print[k], {n, 1, 28} ]
  • PARI
    { n=0; f="b063104.txt"; write(f, "0 0"); for (n=1, 28, k=4; while (isprime(k) || eulerphi(k + 2^n) != eulerphi(k) + 2^n, k++); write(f, n, " ", k) ) } \\ Harry J. Smith, Aug 18 2009

Formula

a(n) = Min{x: A000010(n)+2^n = A000010(x+2^n)} = Min{x: A051953(x+2^n) = A051953(n)}

Extensions

More terms from Robert G. Wilson v, Nov 03 2001
a(29)-a(35) from Donovan Johnson, Aug 18 2011

A063519 Least composite k such that phi(k+12n) = phi(k)+12n and sigma(k+12n) = sigma(k) + 12n where phi is the Euler totient function and sigma is the sum of divisors function.

Original entry on oeis.org

65, 95, 341, 95, 161, 115, 629, 203, 145, 203, 365, 155, 185, 155, 301, 185, 329, 235, 1541, 287, 185, 287, 413, 205, 329, 215, 469, 215, 905, 371, 365, 305, 553, 371, 1037, 235, 1145, 623, 445, 371, 35249, 295, 1133, 371, 497, 515, 749, 413, 305, 671, 565
Offset: 1

Views

Author

Labos Elemer, Aug 01 2001

Keywords

Comments

No such simultaneous solutions were found if d=12n+6.

Examples

			a(97)=10217 because 10217 is composite, phi(10217)+1164 = 9600+1164 = 10764 = phi(11381) and sigma(10217)+1164 = 10836+1164 = 12000 = sigma(11381) with 1164 = 12*97 and there is no smaller composite with these properties.
		

Crossrefs

Formula

a(n) = Min{k: phi(k+12n) = phi(k)+12n and sigma(k+12n) = sigma(k)+12n and k is composite} with phi(k) = A000010(k) and sigma(k) = A000203(k).

Extensions

Name corrected by Sean A. Irvine, Apr 30 2023
Showing 1-6 of 6 results.