cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115227 Numbers k such that k = (d_1+7)(d_2+7)*...*(d_m+7) where d_1 d_2 ... d_m is the decimal expansion of k.

Original entry on oeis.org

8314460009856000, 31746120037632000, 92632873013093597184000000, 1108240107492643314063114240000, 25425833233403394290952098021376000000000, 67839608823081187608930897100800000000000, 1064102035269050218905833606927320350720000000
Offset: 1

Views

Author

Giovanni Resta, Jan 16 2006

Keywords

Examples

			a(1) = 8314460009856000 = (7+8)*(7+3)*(7+1)*...*(7+6)*(7+0)*(7+0)*(7+0).
		

Crossrefs

Extensions

a(6)-a(18) from Max Alekseyev, Jan 25 2015

A055481 Numbers k for which there exists some m such that k = Sum_{i=1..1+floor(log_10(k))} binomial(m, d_i), where d_i is the i-th digit of k.

Original entry on oeis.org

1, 10, 18, 21, 72, 100, 101, 111, 134, 231, 246, 505, 682, 1000, 1010, 1100, 1122, 2210, 3103, 4006, 6008, 10000, 10001, 10012, 11101, 15453, 20101, 29358, 34698, 56576, 84304, 100000, 100010, 100011, 100100, 100101, 100110, 100303, 101000, 101001, 101010
Offset: 1

Views

Author

Erich Friedman, Jun 27 2000

Keywords

Comments

Contains numbers of the form 10^k, k >= 0 so the sequence is infinite. - David A. Corneth, Oct 30 2018

Examples

			3103 = C(22, 3) + C(22, 1) + C(22, 0) + C(22, 3).
C(k, 1) + C(k, 1) + C(k, 1) + C(k, 0) + C(k, 0) + C(k, 0) = 3k + 3 so all 6-digit numbers with 3 ones and 3 zeros are in the sequence. - _David A. Corneth_, Oct 30 2018
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Block[{d = IntegerDigits@n, k=1, v, x}, If[ Max@d <= 3, False =!= Reduce[ Total@ Binomial[x, d] == n && x>0, x, Integers], While[(v = Total@ Binomial[k, d]) < n, k++]; v == n]]; Select[ Range[10^5], ok] (* Giovanni Resta, Oct 30 2018 *)
  • PARI
    is(n) = my(d = digits(n)); for(i = 1, n, s = sum(j = 1, #d, binomial(i, d[j])); if(s >= n, return(s == n))) \\ David A. Corneth, Oct 30 2018

Extensions

a(31)-a(41) from Giovanni Resta, Oct 30 2018

A113756 Numbers n>9 such that n=Abs[(c+d_1)*(c+d_2)*...*(c+d_k)] where d_1 d_2 ... d_k is the decimal expansion of n and c is an integer constant.

Original entry on oeis.org

12, 18, 24, 35, 50, 56, 90, 100, 120, 180, 210, 315, 350, 450, 500, 672, 728, 780, 840, 910, 1500, 1800, 3150, 3500, 3920, 4320, 4752, 5000, 7056, 7200, 7744, 8960, 16500, 18000, 19008, 24960, 31500, 35000, 50000, 57915, 59400, 60480, 67392, 91728
Offset: 1

Views

Author

Giovanni Resta, Jan 17 2006

Keywords

Comments

Some entries, namely 12, 18, 24, 35, 50, 56, 90, 120, 210, 315, 840, 4752, 7744, 917280 (up to 10^20), have 2 representations, e.g., 840 for c=6 and c=-14 or 917280 for c=6 and c=-15. Sequence is infinite since contains 35*10^k, 315*10^k, 18*10^k and 5*10^k, for k>=0 and c=-10.

Examples

			315 belongs since 315=|(4+3)(4+1)(4+5)|
728 belongs since 728=|(-15+7)(-15+2)(-15+8)|
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[d = IntegerDigits@n; Do[If[n == Abs[Times @@ (d + c)], AppendTo[L, {n, c}]; Print[{n, c}]], {c, -19, 10}], {n, 10, 1000000}]; Print[Union[Transpose[L][[1]]]]; L

A260213 Numbers j such that j = (c_1 + k)*(c_2 + k)*...*(c_m + k) for some k > 0 where c_1, c_2, ..., c_m is the centesimal expansion of j.

Original entry on oeis.org

114, 120, 147, 198, 264, 420, 500, 506, 513, 525, 533, 550, 558, 568, 581, 648, 1102, 1116, 1168, 1302, 1320, 1377, 1680, 1692, 1710, 1720, 1734, 1755, 1771, 1872, 2106, 2132, 2310, 2332, 2380, 2664, 2714, 2736, 2790, 2914, 2940, 3312
Offset: 1

Views

Author

Pieter Post, Jul 19 2015

Keywords

Comments

k cannot be larger than 99, because in that case the product of the terms c_i+k is larger than the number j itself. For j up to 10^12, the highest value for k is 71, for 910602 = (71+91)*(71+6)*(71+2).
All terms j < 10000 have the following property. j = c_1//c_2, so j = (c_1 + k)*(c_2 + k). Let kk = c_1 + c_2 + k then j = (kk - c_1)*(kk - c_2). For example, 513 = (5 + 14)*(13 + 14), kk = 5 + 13 + 14 = 32, so 513 = (32 - 5)*(32 - 13).

Examples

			114 = (1 + 5)*(14 + 5) and 114 = (20 - 1)*(20 - 14).
1710 = (17 + 28)*(10 + 28) and 1710 = (55 - 17)*(55 - 10).
		

Crossrefs

Cf. A055482.

Programs

  • PARI
    is(n)=my(d=digits(n,100),t); while((t=vecprod(d))99 \\ Charles R Greathouse IV, Aug 28 2015
  • Python
    def pod(n,m,a):
        kk = 1
        while n > 0:
            kk= kk*(n%m+a)
            n =int(n//m)
        return kk
    for c in range (1,10000):
        for a in range (1,100):
            if c==pod(c,100,a):
                print (c)
    
Showing 1-4 of 4 results.