A055546 a(n) = (-1)^(n+1) * 2^n * n!^2.
-1, 2, -16, 288, -9216, 460800, -33177600, 3251404800, -416179814400, 67421129932800, -13484225986560000, 3263182688747520000, -939796614359285760000, 317651255653438586880000, -124519292216147926056960000, 56033681497266566725632000000
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- Paul C. Kainen, Construction numbers: How to build a graph?, arXiv:2302.13186 [math.CO], 2023.
- Usman A. Khan, Soummya Kar and Jose M. F. Moura, A novel geometric approach towards a linear theory for sensor localization, 2013.
- Alan L. Mackay, On the regular heptagon, J. Math. Chemistry, vol. 21, 1997, 197-209.
- Eric Weisstein's World of Mathematics, Cayley-Menger Determinant.
Programs
-
Mathematica
Table[(-1)^(n+1)2^n n!^2, {n, 0, 20}]
-
PARI
a(n)={(-1)^(n+1) * 2^n * n!^2} \\ Andrew Howroyd, Nov 07 2019
Formula
E.g.f.: -arcsinh(x/sqrt(2))^2. - Vladeta Jovovic, Aug 30 2004
Sum_{n>=0} |a(n)|/(2*n+1)! = Pi/2. - Daniel Suteu, Feb 06 2017
From Amiram Eldar, Nov 18 2020: (Start)
Sum_{n>=0} 1/a(n) = (-1) * A334383.
Sum_{n>=0} (-1)^(n+1)/a(n) = A334381. (End)
Extensions
Terms a(14) and beyond from Andrew Howroyd, Nov 07 2019
Comments