cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055029 Number of inequivalent Gaussian primes of norm n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(-1).
Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-i).

Examples

			There are 8 Gaussian primes of norm 5, +-1+-2i and +-2+-i, but only two inequivalent ones (2+-i).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.

Crossrefs

Programs

Formula

a(n) = A055028(n)/4.
a(n) = 2 if n is a prime = 1 (mod 4); a(n) = 1 if n is 2, or p^2 where p is a prime = 3 (mod 4); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006
a(n) = if n = 2 then 1 else 2*A079260(n) + A079261(A037213(n)). - Reinhard Zumkeller, Nov 11 2012

Extensions

More terms from Reiner Martin, Jul 20 2001

A345435 Represent the ring of Eisenstein integers E = {x+y*omega: x, y rational integers, omega = exp(2*Pi*i/3)} by the cells of a hexagonal grid; number the cells of the grid along a counterclockwise hexagonal spiral, with the cells 0, 1 numbered 0, 1. Sequence lists the index numbers of the cells which are 0 or a prime in E.

Original entry on oeis.org

0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 91, 95, 97, 101, 103, 107, 109, 113, 115
Offset: 1

Views

Author

N. J. A. Sloane, Jun 23 2021

Keywords

Comments

The Eisenstein integer represented by cell m is A307013(m) + A307012(m)*omega. Thus the set of Eisenstein primes is {A307013(a(n)) + A307012(a(n))*omega : n >= 2}. - Peter Munn, Jun 26 2021
The Eisenstein integer a + b*omega has norm a^2 - a*b + b^2 (see A003136). The number of Eisenstein integers of norm n is given by A004016(n).
The norms of the Eisenstein primes are given in A055664, and the number of Eisenstein primes of norm n is given in A055667.
Reid's 1910 book (still in print) is still the best reference for the Eisenstein integers and similar rings.

Examples

			The smallest Eisenstein integers are 0 (of norm 0), and the six units of norm 1, namely (writing w for omega) +-1, +-w, +-w^2.
The first few Eisenstein primes are (here u is any of the six units):
   u*(2+w), norm = 3, number = 6;
   2*u, norm = 4, number = 6;
   u*(3+w), norm = 7, number = 6;
   u*(3+2*w), norm = 7, number = 6 (so there are 12 primes of norm 7 - see A055667).
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag; Table 4.4, p. 111.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970; Theorem 8.22 on page 295 lists the nine UFDs of the form Q(sqrt(-d)), cf. A003173.

Crossrefs

Programs

  • PARI
    See Links section.

Extensions

More terms from Rémy Sigrist, Jun 26 2021

A055668 Number of inequivalent Eisenstein-Jacobi primes of norm n.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-omega, +-omega^2).

Examples

			There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

Crossrefs

Cf. A055664-A055667, A055025-A055029. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.

Programs

  • Mathematica
    a[3] = 1; a[p_ /; PrimeQ[p] && Mod[p, 6] == 1] = 2; a[n_ /; PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2] = 1; a[] = 0; Table[a[n], {n, 0, 104}] (* _Jean-François Alcover, Aug 19 2013, after Franklin T. Adams-Watters *)
    Table[Which[PrimeQ[n]&&Mod[n,6]==1,2,n==3,1,PrimeQ[Sqrt[n]]&&Mod[ Sqrt[ n],3] == 2,1,True,0],{n,0,110}] (* Harvey P. Dale, Jun 17 2017 *)

Formula

a(n) = 2 if n is a prime = 1 (mod 6); a(n) = 1 if n = 3 or n = p^2 where p is a prime = 2 (mod 3); a(n) = 0 otherwise. - Franklin T. Adams-Watters, May 05 2006

Extensions

More terms from Franklin T. Adams-Watters, May 05 2006

A135461 a(n) = 1 if n is the norm of an Eisenstein prime (see A055664) otherwise 0.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2008

Keywords

Examples

			The smallest primes are 1-omega (of norm 3) and 2 (of norm 4).
		

References

  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

Crossrefs

Characteristic function of A055664.

Programs

  • Mathematica
    f[n_]:=If[ PrimeQ[n] && Mod[n, 6] == 1|| PrimeQ[Sqrt[n]] && Mod[Sqrt[n], 3] == 2||n==3,1,0];Array[f,99,0] (* James C. McMahon, Apr 15 2025 *)
  • PARI
    A135461(n) = (isprime(n) && n%3<2) || (issquare(n, &n) && isprime(n) && n%3==2); \\ This is Charles R Greathouse IV's Apr 30 2013 code (with name "is") for A055664. - Antti Karttunen, Dec 06 2017

A135462 a(n) = number of Eisenstein primes (see A055664) of norm <= n.

Original entry on oeis.org

0, 0, 0, 6, 12, 12, 12, 24, 24, 24, 24, 24, 24, 36, 36, 36, 36, 36, 36, 48, 48, 48, 48, 48, 48, 54, 54, 54, 54, 54, 54, 66, 66, 66, 66, 66, 66, 78, 78, 78, 78, 78, 78, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 102, 102, 102, 102, 102
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2008

Keywords

References

  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

Crossrefs

Programs

  • Mathematica
    A055667[n_] := Which[n == 3, 6, PrimeQ[n] && Mod[n, 6] == 1, 12, PrimeQ[p = Sqrt[n]] && Mod[p, 3] == 2, 6, True, 0]; Accumulate[Array[A055667, 66, 0]] (* Jean-François Alcover, Feb 28 2018 *)

Formula

a(n) = a(n-1) + A055667(n) for n > 0. - Seiichi Manyama, Dec 09 2017

Extensions

Terms corrected by Seiichi Manyama, Dec 09 2017

A134324 Number of Eisenstein-Jacobi primes whose modulus is > n and <= n+1.

Original entry on oeis.org

0, 12, 12, 12, 18, 12, 24, 12, 36, 12, 30, 24, 36, 24, 36, 24, 42, 24, 36, 48, 48, 24, 42, 36, 60, 48, 36, 60, 54, 48, 36, 60, 72, 60, 36, 60, 48, 48, 72, 72, 78, 84, 60, 60, 72, 60, 78, 84, 84, 36, 72, 84, 114, 48
Offset: 0

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Jan 30 2008, Feb 06 2008

Keywords

Crossrefs

Formula

a(n) = Sum_{k=n^2+1..(n+1)^2} A055667(k). - Rémy Sigrist, Aug 08 2018

Extensions

Data corrected and name clarified by Rémy Sigrist, Aug 08 2018

A300416 Number of prime Eisenstein integers z = x - y*w^2 with |z| <= n and where w = -1/2 + i*sqrt(3)/2 is a primitive cube root of unity.

Original entry on oeis.org

0, 2, 4, 6, 9, 11, 15, 17, 23, 25, 30, 34, 40, 44, 50, 54, 61, 65, 71, 79, 87, 91, 98, 104, 114, 122, 128, 138, 147, 155, 161, 171, 183, 193, 199, 209, 217, 225, 237, 249, 262, 276, 286, 296, 308, 318, 331, 345, 359, 365, 377, 391, 410, 418, 428
Offset: 1

Views

Author

Frank M Jackson and Michael B Rees, Mar 05 2018

Keywords

Comments

Two prime Eisenstein integers are not counted separately if they are associated, i.e., if their quotient is a unit (1, -w^2, w, -1, w^2 or -w).

Examples

			a(7)=15 because the Eisenstein primes whose modulus <= 7 are 1-w^2, 1-2w^2, 1-3w^2, 1-5w^2, 1-6w^2, 2, 2-w^2, 2-3w^2, 3-w^2, 3-2w^2, 3-4w^2, 4-3w^2, 5, 5-w^2, 6-w^2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{w2=-1/2-I*Sqrt[3]/2, lst={}, x, y, z, Nz}, Do[z=x-w2*y; Nz=x^2+x*y+y^2; If[y==0&&Mod[Sqrt[Nz], 3]==2&&Sqrt[Nz]<=n&&PrimeQ[Sqrt[Nz]], AppendTo[lst, {x, y}], If[Mod[Nz, 3]!=2&&Sqrt[Nz]<=n&&PrimeQ[Nz], AppendTo[lst, {x, y}]]], {x, 0, n}, {y, 0, n}]; Length@lst]; Array[a, 100]
Showing 1-7 of 7 results.