cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014

A203719 A204521(n)^2 = floor[A055812(n)/5]: Squares which written in base 5, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 16, 64, 441, 3025, 5184, 20736, 142129, 974169, 1669264, 6677056, 45765225, 313679521, 537497856, 2149991424, 14736260449, 101003831721, 173072640400, 692290561600, 4745030099481, 32522920134769, 55728852710976, 222915410843904
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-5 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=5;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 323*a(n-4)-323*a(n-8)+a(n-12) for n>13. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^9 +9*x^8 +64*x^7 +16*x^6 +118*x^5 +118*x^4 +64*x^3 +16*x^2 +9*x +1) / ((x -1)*(x +1)*(x^2 -4*x -1)*(x^2 +1)*(x^2 +4*x -1)*(x^4 +18*x^2 +1)). - Colin Barker, Sep 20 2014

Extensions

More terms from Colin Barker, Sep 20 2014

A023110 Squares which remain squares when the last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 16, 49, 169, 256, 361, 1444, 3249, 18496, 64009, 237169, 364816, 519841, 2079364, 4678569, 26666896, 92294449, 341991049, 526060096, 749609641, 2998438564, 6746486769, 38453641216, 133088524969, 493150849009, 758578289296, 1080936581761
Offset: 1

Views

Author

Keywords

Comments

This A023110 = A031149^2 is the base 10 version of A001541^2 = A055792 (base 2), A001075^2 = A055793 (base 3), A004275^2 = A055808 (base 4), A204520^2 = A055812 (base 5), A204518^2 = A055851 (base 6), A204516^2 = A055859 (base 7), A204514^2 = A055872 (base 8) and A204502^2 = A204503 (base 9). - M. F. Hasler, Sep 28 2014
For the first 4 terms the square has only one digit. It is understood that deleting this digit yields 0. - Colin Barker, Dec 31 2017

References

  • R. K. Guy, Neg and Reg, preprint, Jan 2012.

Crossrefs

Programs

  • Maple
    count:= 1: A[1]:= 0:
    for n from 0 while count < 35 do
      for t in [1,4,6,9] do
        if issqr(10*n^2+t) then
           count:= count+1;
           A[count]:= 10*n^2+t;
        fi
      od
    od:
    seq(A[i],i=1..count); # Robert Israel, Sep 28 2014
  • Mathematica
    fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range@ 1000000, fQ]^2 (* Robert G. Wilson v, Jan 15 2011 *)
  • PARI
    for(n=0,1e7, issquare(n^2\10) & print1(n^2",")) \\  M. F. Hasler, Jan 16 2012

Formula

Appears to satisfy a(n)=1444*a(n-7)+a(n-14)-76*sqrt(a(n-7)*a(n-14)) for n >= 16. For n = 15, 14, 13, ... this would require a(1) = 16, a(0) = 49, a(-1) = 169, ... - Henry Bottomley, May 08 2001; edited by Robert Israel, Sep 28 2014
a(n) = A031149(n)^2. - M. F. Hasler, Sep 28 2014
Conjectures from Colin Barker, Dec 31 2017: (Start)
G.f.: x^2*(1 + 4*x + 9*x^2 + 16*x^3 + 49*x^4 + 169*x^5 + 256*x^6 - 1082*x^7 - 4328*x^8 - 9738*x^9 - 4592*x^10 - 6698*x^11 - 6698*x^12 - 4592*x^13 + 361*x^14 + 1444*x^15 + 3249*x^16 + 256*x^17 + 169*x^18 + 49*x^19 + 16*x^20) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 1442*x^7 + x^14)).
a(n) = 1443*a(n-7) - 1443*a(n-14) + a(n-21) for n>22.
(End)

Extensions

More terms from M. F. Hasler, Jan 16 2012

A055793 Numbers k such that k and floor[k/3] are both squares; i.e., squares which remain squares when written in base 3 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 49, 676, 9409, 131044, 1825201, 25421764, 354079489, 4931691076, 68689595569, 956722646884, 13325427460801, 185599261804324, 2585064237799729, 36005300067391876, 501489136705686529, 6984842613812219524, 97286307456665386801, 1355023461779503195684, 18873042157456379352769
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Or, squares of the form 3k^2+1.
See A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Examples

			a(3) = 49 because 49 = 7^2 = 1211 base 3 and 121 base 3 = 16 = 4^2.
		

Crossrefs

Cf. also A023110, A204503, A204512, A204517, A204519, A055812, A055808 and A055792 for the analog in other bases.

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 14*Self(n-1) - Self(n-2) - 6: n in [1..30]]; // Vincenzo Librandi, Jan 27 2013
  • Maple
    A055793 := proc(n) coeftayl(x*(1-11*x+4*x^2)/((1-x)*(1-14*x+x^2)), x=0, n); end proc: seq(A055793(n), n=0..20); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{15,-15,1},{0,1,4,49},40] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    sq3nsqplus1(n) = { for(x=1,n, y = 3*x*x+1; \ print1(y" ") if(issquare(y),print1(y" ")) ) }
    

Formula

a(n) = 3*A098301(n-2)+1. - R. J. Mathar, Jun 11 2009
a(n) = 14*a(n-1)-a(n-2)-6, with a(0)=1, a(1)=4. (See Brown and Shiue)
a(n) = (A001075(n-2))^2. - Johannes Boot Dec 16 2011, corrected by M. F. Hasler, Jan 15 2012
G.f.: x*(1 - 11*x + 4*x^2)/((1 - x)*(1 - 14*x + x^2)). - M. F. Hasler, Jan 15 2012

Extensions

More terms from Cino Hilliard, Mar 01 2003

A204502 Numbers such that floor[a(n)^2 / 9] is a square.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or, numbers n such that n^2, with its last base-9 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 9.)

Crossrefs

The squares are in A204503, the squares with last base-9 digit dropped in A204504, and the square roots of the latter in A028310.
Cf. A031149=sqrt(A023110) (base 10), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Mathematica
    Select[Range[0,200],IntegerQ[Sqrt[Floor[#^2/9]]]&] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    b=9;for(n=0,200,issquare(n^2\b) & print1(n","))

Formula

Conjecture: a(n) = 3*n-12 for n>5. G.f.: x^2*(x^2+x+1)*(x^3-x+1)/(x-1)^2. [Colin Barker, Nov 23 2012]

A204503 Squares n^2 such that floor(n^2/9) is again a square.

Original entry on oeis.org

0, 1, 4, 9, 16, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Squares which remain squares when their last base-9 digit is dropped.
(For the first three terms, which have only 1 digit in base 9, dropping that digit is meant to yield zero.)
Base-9 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A055851 (base 6), A055859 (base 7), A055872(base 8) and A023110 (base 10).

Programs

  • Mathematica
    Select[Range[0,200]^2,IntegerQ[Sqrt[Floor[#/9]]]&] (* Harvey P. Dale, Jan 27 2012 *)
  • PARI
    b=9;for(n=1,200,issquare(n^2\b) & print1(n^2,","))

Formula

a(n) = A204502(n)^2.
Conjectures: a(n) = 9*(n-4)^2 for n>5. G.f.: x^2*(7*x^6-12*x^5-11*x^4-x-1) / (x-1)^3. - Colin Barker, Sep 15 2014

A204514 Numbers such that floor(a(n)^2 / 8) is again a square.

Original entry on oeis.org

0, 1, 2, 3, 6, 17, 34, 99, 198, 577, 1154, 3363, 6726, 19601, 39202, 114243, 228486, 665857, 1331714, 3880899, 7761798, 22619537, 45239074, 131836323, 263672646, 768398401, 1536796802, 4478554083, 8957108166, 26102926097, 52205852194, 152139002499, 304278004998, 886731088897
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square, with its last base-8 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 8.)
See A204504 for the squares resulting from truncation of a(n)^2, and A204512 for their square roots. - M. F. Hasler, Sep 28 2014

Crossrefs

Cf. A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Maple
    A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{0,6,0,-1},{0,1,2,3,6},40] (* Harvey P. Dale, Nov 23 2022 *)
  • PARI
    b=8;for(n=0,1e7,issquare(n^2\b) & print1(n","))
    
  • PARI
    A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))),n-1,x)

Formula

G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4).
a(n) = sqrt(A055872(n)). - M. F. Hasler, Sep 28 2014
a(2n) = A001541(n-1). a(2n+1) = A003499(n-1). - R. J. Mathar, Feb 05 2020

A204520 Numbers such that floor(a(n)^2 / 5) is a square.

Original entry on oeis.org

0, 1, 2, 3, 7, 9, 18, 47, 123, 161, 322, 843, 2207, 2889, 5778, 15127, 39603, 51841, 103682, 271443, 710647, 930249, 1860498, 4870847, 12752043, 16692641, 33385282
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Also: Numbers whose square, with its last base-5 digit dropped, is again a square. (For the three initial terms whose squares have only one digit in base 5, it is then understood that this yields zero.)

Crossrefs

Cf. A031149, A055812, A204502, A204514, A204516, A204518 and A004275, A001075, A001541 for the analog in bases 10,...,6 and 4, 3, 2.

Programs

  • Mathematica
    Select[Range[0,5*10^6],IntegerQ[Sqrt[Floor[#^2/5]]]&] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Jul 15 2025 *)
  • PARI
    b=5;for(n=0,2e9,issquare(n^2\b) && print1(n","))

Formula

a(n) = sqrt(A055812(n)).
Empirical g.f.: -x^2*(x+1)*(3*x^6 + 4*x^5 + 14*x^4 - 5*x^3 - 2*x^2 - x-1) / ((x^4 - 4*x^2 - 1)*(x^4 + 4*x^2 - 1)). - Colin Barker, Sep 15 2014

A055851 a(n) and floor(a(n)/6) are both squares; i.e., squares that remain squares when written in base 6 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 729, 2401, 9604, 71289, 235225, 940900, 6985449, 23049601, 92198404, 684502569, 2258625625, 9034502500, 67074266169, 221322261601, 885289046404, 6572593581849, 21687323011225, 86749292044900
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

For the first 3 terms, the above "base 6" interpretation is questionable, since they have only 1 digit in base 6. It is understood that dropping this digit yields 0. - M. F. Hasler, Jan 15 2012
Base-6 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A204517 (base 7), A204503 (base 9) and A023110 (base 10). - M. F. Hasler, Jan 15 2012

Examples

			a(5) = 100 because 100 = 10^2 = 244 base 6 and 24 base 6 = 16 = 4^2.
		

Crossrefs

Cf. A023110.

Programs

  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012

Formula

a(n) = A204518(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(9*x^8+100*x^7+25*x^6-162*x^5-296*x^4-74*x^3+9*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 15 2014

Extensions

More terms added and offset changed to 1 by M. F. Hasler, Jan 16 2012

A055872 a(n) and floor(a(n)/8) are both squares; i.e., squares that remain squares when written in base 8 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 9, 36, 289, 1156, 9801, 39204, 332929, 1331716, 11309769, 45239076, 384199201, 1536796804, 13051463049, 52205852196, 443365544449, 1773462177796, 15061377048201, 60245508192804
Offset: 1

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

For the first 3 terms which have only 1 digit in base 8, removing this digit is meant to yield 0.
Base-8 analog of A055792 (base 2), A055793 (base 3), A055808 (base 4), A055812 (base 5), A055851 (base 6), A055859 (base 7), A204503 (base 9) and A023110 (base 10). - M. F. Hasler, Jan 15 2012

Examples

			a(5) = 289 because 289 = 17^2 = 441 base 8 and 44 base 8 = 36 = 6^2.
		

Crossrefs

Cf. A023110, A055792 (bisection).

Programs

  • Mathematica
    Select[Range[0,8*10^6]^2,IntegerQ[Sqrt[FromDigits[Most[ IntegerDigits[ #,8]], 8]]]&] (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    b=8;for(n=1,200,issquare(n^2\b) && print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012

Formula

a(n) = A204514(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(4*x+1)*(9*x^4-26*x^2+1) / ((x-1)*(x+1)*(x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Sep 15 2014

Extensions

More terms added and offset changed to 1 by M. F. Hasler, Jan 15 2012
Showing 1-10 of 20 results. Next