A055819 Row sums of array T in A055818; twice the odd-indexed Fibonacci numbers after initial term.
1, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Youngwoo Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, arXiv:1804.08119 [math.NT], 2018.
- D. Yaqubi, M. Farrokhi D.G., H. Gahsemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
Crossrefs
Essentially the same as A052995.
Programs
-
GAP
a:=[2,4];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Jan 22 2020
-
Magma
I:=[2,4]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 22 2020
-
Maple
seq(`if`(n=0, 1, simplify(2*(ChebyshevU(n, 3/2)-2*ChebyshevU(n-1, 3/2)))), n = 0..30); # G. C. Greubel, Jan 22 2020
-
Mathematica
CoefficientList[Series[(1-x-x^2)/(1-3*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *) Join[{1},LinearRecurrence[{3,-1},{2,4},30]] (* Harvey P. Dale, Oct 01 2014 *) Table[If[n==0, 1, 2*(ChebyshevU[n, 3/2] -2*ChebyshevU[n-1, 3/2])], {n,0,30}] (* G. C. Greubel, Jan 22 2020 *)
-
PARI
Vec((1-x-x^2)/(1-3*x+x^2) + O(x^40)) \\ Colin Barker, Feb 01 2014
-
Sage
[1]+[2*(chebyshev_U(n,3/2) -2*chebyshev_U(n-1,3/2)) for n in (1..30)] # G. C. Greubel, Jan 22 2020
Formula
From Colin Barker, Feb 01 2014: (Start)
a(n) = 3*a(n-1) - a(n-2) for n > 0.
G.f.: (1 -x -x^2)/(1-3*x+x^2). (End)
a(n) = 2*A001519(n) for n > 0. - Colin Barker, Feb 04 2014
From G. C. Greubel, Jan 22 2020: (Start)
a(n) = 2*(ChebyshevU(n, 3/2) - 2*ChebyshevU(n-1, 3/2)), with a(0)=1.
E.g.f.: -1 + 2*exp(3*x/2)*( cosh(sqrt(5)*x/2) - sinh(sqrt(5)*x/2)/sqrt(5) ). (End)
Comments