cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055819 Row sums of array T in A055818; twice the odd-indexed Fibonacci numbers after initial term.

Original entry on oeis.org

1, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy - 4. - Michel Lagneau, Feb 01 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 256 = 0. - Colin Barker, Feb 16 2014

Crossrefs

Essentially the same as A052995.

Programs

  • GAP
    a:=[2,4];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Jan 22 2020
  • Magma
    I:=[2,4]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 22 2020
    
  • Maple
    seq(`if`(n=0, 1, simplify(2*(ChebyshevU(n, 3/2)-2*ChebyshevU(n-1, 3/2)))), n = 0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    CoefficientList[Series[(1-x-x^2)/(1-3*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
    Join[{1},LinearRecurrence[{3,-1},{2,4},30]] (* Harvey P. Dale, Oct 01 2014 *)
    Table[If[n==0, 1, 2*(ChebyshevU[n, 3/2] -2*ChebyshevU[n-1, 3/2])], {n,0,30}] (* G. C. Greubel, Jan 22 2020 *)
  • PARI
    Vec((1-x-x^2)/(1-3*x+x^2) + O(x^40)) \\ Colin Barker, Feb 01 2014
    
  • Sage
    [1]+[2*(chebyshev_U(n,3/2) -2*chebyshev_U(n-1,3/2)) for n in (1..30)] # G. C. Greubel, Jan 22 2020
    

Formula

From Colin Barker, Feb 01 2014: (Start)
a(n) = 3*a(n-1) - a(n-2) for n > 0.
G.f.: (1 -x -x^2)/(1-3*x+x^2). (End)
a(n) = 2*A001519(n) for n > 0. - Colin Barker, Feb 04 2014
From G. C. Greubel, Jan 22 2020: (Start)
a(n) = 2*(ChebyshevU(n, 3/2) - 2*ChebyshevU(n-1, 3/2)), with a(0)=1.
E.g.f.: -1 + 2*exp(3*x/2)*( cosh(sqrt(5)*x/2) - sinh(sqrt(5)*x/2)/sqrt(5) ). (End)