cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A055818 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = R(0,i) = 1 for i >= 0, R(i,j) = Sum_{h=0..i-1} Sum_{m=0..j} R(h,m) for i >= 1, j >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 11, 9, 4, 1, 1, 23, 24, 14, 5, 1, 1, 47, 60, 43, 20, 6, 1, 1, 95, 144, 122, 69, 27, 7, 1, 1, 191, 336, 328, 217, 103, 35, 8, 1, 1, 383, 768, 848, 640, 354, 146, 44, 9, 1, 1, 767, 1728, 2128, 1800, 1131, 543, 199, 54, 10, 1
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Examples

			Rows begins as:
  1;
  1,  1;
  1,  2, 1;
  1,  5, 3, 1;
  1, 11, 9, 4, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(i,j)
        if i=0 or j=0 then return 1;
        else return Sum([0..i-1], h-> Sum([0..j], m-> T(h,m) ));
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n-k,k) ))); # G. C. Greubel, Jan 21 2020
  • Magma
    function T(i,j)
      if i eq 0 or j eq 0 then return 1;
      else return (&+[(&+[T(h,m): m in [0..j]]): h in [0..i-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
          fi; end:
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 21 2020 *)
  • PARI
    T(i,j) = if(i==0 || j==0, 1, sum(h=0,i-1, sum(m=0,j, T(h,m) )));
    for(n=0,12, for(k=0, n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020
    

A052995 Expansion of 2*x*(1 - x)/(1 - 3*x + x^2).

Original entry on oeis.org

0, 2, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346, 279167724890, 730870592324
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Terms >=4 give solutions x to floor(phi^2*x^2) - floor(phi*x)^2 = 5, where phi =(1 + sqrt(5))/2. - Benoit Cloitre, Mar 16 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 18*x*y + y^2 + 256 = 0. - Colin Barker, Feb 14 2014
a(n+1) is the square of the distance AB, where A is the point (F(n), F(n+1)), B is the 90-degree rotation of A about the origin, and F(n)=A000045(n) are the Fibonacci numbers. - Burak Muslu, Mar 24 2021

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 30.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 60-61.

Crossrefs

Bisection of A006355.
First differences of A025169.

Programs

  • Maple
    spec := [S, S=Prod(Sequence(Union(Prod(Sequence(Z),Z),Z)),Union(Z,Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3, -1}, {0, 2, 4}, 30] (* or *)
    Nest[Append[#, 3 #[[-1]] - #[[-2]]] &, {0, 2, 4}, 27] (* or *)
    CoefficientList[Series[-2 x (-1 + x)/(1 - 3 x + x^2), {x, 0, 29}], x] (* Michael De Vlieger, Jul 18 2018 *)
  • PARI
    concat(0, Vec(2*x*(1-x)/(1-3*x+x^2) + O(x^50))) \\ Colin Barker, Mar 30 2016
    
  • PARI
    a(n) = fibonacci(max(0,2*n-1))<<1; \\ Kevin Ryde, Mar 25 2021

Formula

G.f.: -2*x*(-1 + x)/(1 - 3*x + x^2).
a(0) = 0, a(1) = 2, a(2) = 4; for n > 0, a(n) - 3*a(n+1) + a(n+2) = 0.
a(n) = A069403(n-1)+1.
a(n) = Sum(2/5*(-1 + 4*_alpha)*_alpha^(-1-n), _alpha = RootOf(_Z^2 - 3*_Z + 1)).
a(n) = 2*Fibonacci(2*n-1) = 2*A001519(n) for n > 0. - Vladeta Jovovic, Mar 19 2003
a(n+2) = F(n)^2 + F(n+3)^2 = 2*F(n+1)^2 + 2*F(n+2)^2, where F = A000045. - N. J. A. Sloane, Feb 20 2005
a(n) = 1/2*(F(2*n+8) mod F(2*n+2)) for n > 2. - Gary Detlefs, Nov 22 2010
a(n) = F(n-3)*F(n-1) + F(n)*F(n+2) for n > 0, F(-2) = -1, F(-1) = 1. - Bruno Berselli, Nov 03 2015
a(n) = (2^(-n)*((3 - sqrt(5))^n*(1 + sqrt(5)) + (-1 + sqrt(5))*(3 + sqrt(5))^n))/sqrt(5) for n > 0. - Colin Barker, Mar 30 2016
a(n) = Fibonacci(2*n-2) + Lucas(2*n-2) for n > 0. - Bruno Berselli, Oct 13 2017
a(n) = Lucas(2*n) - Fibonacci(2*n) for n > 0. - Diego Rattaggi, Mar 08 2023

Extensions

More terms from James Sellers, Jun 05 2000

A055823 a(n) = T(n,n-6), array T as in A055818.

Original entry on oeis.org

1, 95, 336, 848, 1800, 3422, 6017, 9974, 15782, 24045, 35498, 51024, 71672, 98676, 133475, 177734, 233366, 302555, 387780, 491840, 617880, 769418, 950373, 1165094, 1418390, 1715561, 2062430, 2465376, 2931368, 3468000, 4083527, 4786902, 5587814, 6496727, 7524920
Offset: 6

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([7..50], n-> (n^6 +15*n^5 -65*n^4 -795*n^3 +1864*n^2 +6180*n -7200)/720 )); # G. C. Greubel, Jan 22 2020
  • Magma
    I:=[1,95,336,848,1800,3422,6017,9974,15782,24045, 35498,51024,71672]; [n le 13 select I[n] else 7*Self(n-1)- 21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Dec 30 2016
    
  • Maple
    seq( `if`(n=6, 1, (n^6 +15*n^5 -65*n^4 -795*n^3 +1864*n^2 +6180*n -7200)/720), n=6..50); # G. C. Greubel, Jan 22 2020
  • Mathematica
    Join[{1, 95, 336, 848, 1800, 3422}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6017, 9974, 15782, 24045, 35498, 51024, 71672}, 50]] (* Vincenzo Librandi, Dec 30 2016 *)
    Table[If[n==6, 1, (n^6 +15*n^5 -65*n^4 -795*n^3 +1864*n^2 +6180*n -7200)/720], {n, 6, 50}] (* G. C. Greubel, Jan 22 2020 *)
  • PARI
    vector(45, n, my(m=n+5); if(m==6, 1, (m^6 +15*m^5 -65*m^4 -795*m^3 +1864*m^2 +6180*m -7200)/720)) \\ G. C. Greubel, Jan 22 2020
    
  • Sage
    [1]+[(n^6 +15*n^5 -65*n^4 -795*n^3 +1864*n^2 +6180*n -7200)/720 for n in (7..50)] # G. C. Greubel, Jan 22 2020
    

Formula

From Chai Wah Wu, Dec 29 2016: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 13.
G.f.: x^6*(1 + 88*x - 308*x^2 + 456*x^3 - 370*x^4 + 174*x^5 - 45*x^6 + 5*x^7)/(1-x)^7. (End)
From G. C. Greubel, Jan 22 2020: (Start)
a(n) = (n^6 + 15*n^5 - 65*n^4 - 795*n^3 + 1864*n^2 + 6180*n -7200)/720, for n > 6, with a(6) = 1.
E.g.f.: (7200 - 2880*x^2 - 960*x^3 + 30*x^4 + 60*x^5 - 5*x^6 + (-7200 + 7200*x - 720*x^2 - 720*x^3 + 150*x^4 + 30*x^5 + x^6)*exp(x))/720. (End)

A055824 a(n) = T(2*n,n), array T as in A055818.

Original entry on oeis.org

1, 2, 9, 43, 217, 1131, 6017, 32467, 177009, 972691, 5378425, 29889531, 166795977, 934039419, 5246059761, 29540072355, 166708076001, 942651407907, 5339465635049, 30291114653131, 172081678284729, 978807205953931
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
    fi; end: seq(T(n, n), n=0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n, n], {n,0,25}] (* G. C. Greubel, Jan 22 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n, n) for n in (0..30)] # G. C. Greubel, Jan 22 2020

A055825 a(n) = T(2n+1,n), array T as in A055818.

Original entry on oeis.org

1, 5, 24, 122, 640, 3422, 18536, 101362, 558336, 3093302, 17218168, 96214890, 539415552, 3032659086, 17091411912, 96527966178, 546184965120, 3095613086822, 17571039730136, 99868193737306, 568303494617472
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Also main diagonal of array: A(i,1)=i, A(1,j)=j; A(i,j) = 2*A(i,j-1) - A(i-1,j). - Benoit Cloitre, Feb 26 2003

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+1, n), n=0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n+1, n], {n,0,25}] (* G. C. Greubel, Jan 22 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+1, n) for n in (0..30)] # G. C. Greubel, Jan 22 2020

A055826 a(n) = T(2n+2,n), array T as in A055818.

Original entry on oeis.org

1, 11, 60, 328, 1800, 9924, 54964, 305680, 1706256, 9554620, 53653996, 302038488, 1703995800, 9631951476, 54539233380, 309296779296, 1756495236128, 9987721546860, 56857004161180, 324008331785320, 1848182861702184
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+2, n), n=0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n+2, n], {n,0,25}] (* G. C. Greubel, Jan 22 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+2, n) for n in (0..30)] # G. C. Greubel, Jan 22 2020

A055827 a(n) = T(2n+3,n), array T as in A055818.

Original entry on oeis.org

1, 23, 144, 848, 4880, 27816, 157920, 895264, 5074272, 28772280, 163262704, 927203184, 5270629104, 29988361032, 170780080320, 973422085184, 5552990609344, 31702646247768, 181128948471888, 1035584204252560
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+3, n), n=0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n+3, n], {n,0,25}] (* G. C. Greubel, Jan 22 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+3, n) for n in (0..30)] # G. C. Greubel, Jan 22 2020

A055828 a(n) = T(2n+4,n), array T as in A055818.

Original entry on oeis.org

1, 47, 336, 2128, 12848, 75808, 441824, 2557024, 14737312, 84726992, 486388912, 2789840688, 15995087184, 91689974592, 525608606912, 3013422222272, 17280193763392, 99117586397296, 568696489153808, 3263973649089808
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+4, n), n=0..30); # G. C. Greubel, Jan 22 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n+4, n], {n,0,25}] (* G. C. Greubel, Jan 22 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+4, n) for n in (0..30)] # G. C. Greubel, Jan 22 2020

A055829 a(n) = T(2n+5,n), array T as in A055818.

Original entry on oeis.org

1, 95, 768, 5216, 33024, 201792, 1208320, 7145792, 41919744, 244590496, 1421823232, 8243669664, 47708339712, 275738420864, 1592186658816, 9187634766976, 52992487665152, 305556178607328, 1761501729738496
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if i=0 or j=0 then 1
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+5, n), n=0..30); # G. C. Greubel, Jan 23 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n+5, n], {n,0,30}] (* G. C. Greubel, Jan 23 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (i==0 or j==0): return 1
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+5, n) for n in (0..30)] # G. C. Greubel, Jan 23 2020

A237132 Values of x in the solutions to x^2 - 3xy + y^2 + 11 = 0, where 0 < x < y.

Original entry on oeis.org

3, 4, 5, 9, 12, 23, 31, 60, 81, 157, 212, 411, 555, 1076, 1453, 2817, 3804, 7375, 9959, 19308, 26073, 50549, 68260, 132339, 178707, 346468, 467861, 907065, 1224876, 2374727, 3206767, 6217116, 8395425, 16276621, 21979508, 42612747, 57543099, 111561620
Offset: 1

Views

Author

Colin Barker, Feb 04 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 704 = 0.

Examples

			9 is in the sequence because (x, y) = (9, 23) is a solution to x^2 - 3xy + y^2 + 11 = 0.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x-1)*(3*x^2+7*x+3)/((x^2-x-1)*(x^2+x-1)) + O(x^100))

Formula

a(n) = 3*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(3*x^2+7*x+3) / ((x^2-x-1)*(x^2+x-1)).
a(n) = F(n+2) + (-1)^n*F(n-3), n>1, with F the Fibonacci numbers (A000045). - Ralf Stephan, Feb 05 2014
Let h(n) = hypergeom([(1 - n)/2, n mod 2 - n/2], [1 - n], -4) then a(n) = h(n-1) + h(n) for n > 3. - Peter Luschny, Sep 03 2019
Showing 1-10 of 14 results. Next