cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055834 a(n) = T(2n,n), where T is the array in A055830.

Original entry on oeis.org

1, 1, 4, 18, 85, 413, 2044, 10248, 51876, 264550, 1357070, 6994780, 36196706, 187938842, 978599560, 5108177816, 26721644973, 140050505085, 735254208670, 3865837887450, 20353393741065, 107290306033845, 566194674179160, 2990958274811520, 15814562990604300, 83690040760923168
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Binomial(n+k-1,n)*Binomial(k,n-k)) ); # G. C. Greubel, Jan 21 2020
  • Magma
    [&+[(Binomial(n+k-1, n)*Binomial(k, n-k)): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    seq( add(binomial(n+k-1,n)*binomial(k,n-k), k=0..n), n=0..30); # G. C. Greubel, Jan 21 2020
  • Mathematica
    Table[Sum[Binomial[n+k-1,n]Binomial[k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
  • Maxima
    b(n):= sum(binomial(n+k, k)*binomial(k, n-k), k,ceiling(n/2),n)/(n+1);
    B(x):= sum(b(i)*x^(i),i,0,30);
    makelist(coeff(taylor(x*diff(B(x),x)-x*diff(B(x),x)/B(x)+B(x), x,0,20), x,n), n,0,20); /* Vladimir Kruchinin, Sep 21 2015 */
    
  • PARI
    a(n) = sum(k=0,n,binomial(n+k-1,n)*binomial(k,n-k)); \\ Joerg Arndt, May 06 2013
    
  • Sage
    [sum(binomial(n+k-1,n)*binomial(k,n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 21 2020
    

Formula

a(n) = Sum_{k=0..n} binomial(n+k-1,n)*binomial(k,n-k). - Max Alekseyev, Jun 17 2007
Recurrence: 5*(n-1)*n*a(n) = 2*(n-1)*(11*n-3)*a(n-1) + 3*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 27^n/5^n*sqrt(2/(15*Pi*n)). - Vaclav Kotesovec, Nov 19 2012
a(n) = A055835(n)/3 for n>=1. - Philippe Deléham, Jan 25 2014
G.f.: x*B'(x)-x*B'(x)/B(x)+B(x), where B(x) is g.f. of A001002. - Vladimir Kruchinin, Sep 20 2015