A055834 a(n) = T(2n,n), where T is the array in A055830.
1, 1, 4, 18, 85, 413, 2044, 10248, 51876, 264550, 1357070, 6994780, 36196706, 187938842, 978599560, 5108177816, 26721644973, 140050505085, 735254208670, 3865837887450, 20353393741065, 107290306033845, 566194674179160, 2990958274811520, 15814562990604300, 83690040760923168
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..30], n-> Sum([0..n], k-> Binomial(n+k-1,n)*Binomial(k,n-k)) ); # G. C. Greubel, Jan 21 2020
-
Magma
[&+[(Binomial(n+k-1, n)*Binomial(k, n-k)): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Sep 21 2015
-
Maple
seq( add(binomial(n+k-1,n)*binomial(k,n-k), k=0..n), n=0..30); # G. C. Greubel, Jan 21 2020
-
Mathematica
Table[Sum[Binomial[n+k-1,n]Binomial[k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
-
Maxima
b(n):= sum(binomial(n+k, k)*binomial(k, n-k), k,ceiling(n/2),n)/(n+1); B(x):= sum(b(i)*x^(i),i,0,30); makelist(coeff(taylor(x*diff(B(x),x)-x*diff(B(x),x)/B(x)+B(x), x,0,20), x,n), n,0,20); /* Vladimir Kruchinin, Sep 21 2015 */
-
PARI
a(n) = sum(k=0,n,binomial(n+k-1,n)*binomial(k,n-k)); \\ Joerg Arndt, May 06 2013
-
Sage
[sum(binomial(n+k-1,n)*binomial(k,n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 21 2020
Formula
a(n) = Sum_{k=0..n} binomial(n+k-1,n)*binomial(k,n-k). - Max Alekseyev, Jun 17 2007
Recurrence: 5*(n-1)*n*a(n) = 2*(n-1)*(11*n-3)*a(n-1) + 3*(3*n-5)*(3*n-4)*a(n-2). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 27^n/5^n*sqrt(2/(15*Pi*n)). - Vaclav Kotesovec, Nov 19 2012
a(n) = A055835(n)/3 for n>=1. - Philippe Deléham, Jan 25 2014
G.f.: x*B'(x)-x*B'(x)/B(x)+B(x), where B(x) is g.f. of A001002. - Vladimir Kruchinin, Sep 20 2015