A055882 a(n) = 2^n*Bell(n). E.g.f.: exp(exp(2*x)-1).
1, 2, 8, 40, 240, 1664, 12992, 112256, 1059840, 10827264, 118758400, 1389711360, 17258893312, 226463227904, 3127694491648, 45316785602560, 686826595745792, 10861264214949888, 178802342273744896, 3058036745204924416, 54236710945813430272, 995874184692762673152
Offset: 0
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..200
Programs
-
Magma
[2^n*Bell(n): n in [0..20]]; // Vincenzo Librandi, Sep 19 2014
-
Maple
seq(add(binomial(n, k)*(bell(n)), k=0..n), n=0..18); # Zerinvary Lajos, Dec 01 2006 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j) *binomial(n-1, j-1)*2^j, j=1..n)) end: seq(a(n), n=0..23); # Alois P. Heinz, Oct 04 2019
-
Mathematica
nn=20;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2012 *) Table[2^n BellB[n], {n, 0, 20}] (* Vincenzo Librandi, Sep 19 2014 *)
-
Python
# Python 3.2 or higher required from itertools import accumulate A055882_list, blist, b, n2 = [1,2], [1], 1, 4 for _ in range(2, 201): blist = list(accumulate([b]+blist)) b = blist[-1] A055882_list.append(b*n2) n2 *= 2 # Chai Wah Wu, Sep 19 2014
Formula
a(n) = exp(-1)*2^n*Sum_{k>=0} k^n/k!. - Benoit Cloitre, May 20 2002
G.f.: 1/(1-2*x/(1-2*x/(1-2*x/(1-4*x/(1-2*x/(1-6*x/(1-2*x/(1-8*x/(1-... (continued fraction). - Paul Barry, Oct 11 2009
G.f.: 1/(U(0) - 2*x) where U(k) = 1 + 2*x - 2*x*(k+1)/(1 - 2*x/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: G(0)/(1+2*x) where G(k) = 1 - 4*x*(k+1)/((2*k+1)*(4*x*k-1) - 2*x*(2*k+1)*(2*k+3)*(4*x*k-1)/(2*x*(2*k+3) - 2*(k+1)*(4*x*k+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: G(0)/2 where G(k) = 1 - (2*x*k + 1)/(2*x*k - 1 - 2*x*(2*x*k - 1)/(2*x + (2*x*k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 30 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*(k+1)*x - 4*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
Comments