A055990 a(n) is its own 4th difference.
1, 4, 14, 50, 181, 657, 2385, 8657, 31422, 114051, 413966, 1502555, 5453761, 19795288, 71850128, 260791401, 946583628, 3435774958, 12470688498, 45264335853, 164294064481, 596331286321, 2164478699633, 7856317702310, 28515747394555, 103502414271126
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[1, 4, 14, 50]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 06 2012
-
Mathematica
CoefficientList[Series[(1-x)/(1-5*x+6*x^2-4*x^3+x^4),{x,0,30}],x] (* Vincenzo Librandi, Apr 06 2012 *) LinearRecurrence[{5,-6,4,-1},{1,4,14,50},30] (* Harvey P. Dale, Oct 18 2015 *)
-
Maxima
a(n):=sum((binomial(n+3*m+1,n-m-1)),m,0,n-1); /* Vladimir Kruchinin, Nov 18 2020 */
-
PARI
Vec((1-x)/(1-5*x+6*x^2-4*x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012
Formula
a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055989(n) = A055991(n)-A055991(n-1) = A055988(n+1)-2*A055988(n)+A055988(n-1).
G.f.: x*(1-x)/(1-5*x+6*x^2-4*x^3+x^4). [Colin Barker, Apr 05 2012]
a(n) = Sum_{m=0..n-1} C(n+3m+1,n-m-1). - Vladimir Kruchinin, Nov 18 2020
Extensions
More terms from James Sellers, Jun 05 2000
Comments