cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055990 a(n) is its own 4th difference.

Original entry on oeis.org

1, 4, 14, 50, 181, 657, 2385, 8657, 31422, 114051, 413966, 1502555, 5453761, 19795288, 71850128, 260791401, 946583628, 3435774958, 12470688498, 45264335853, 164294064481, 596331286321, 2164478699633, 7856317702310, 28515747394555, 103502414271126
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

Number of compositions of 4*n-2 into parts 1 and 4. - Seiichi Manyama, Feb 03 2024

Crossrefs

Cf. A055988, A055989, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.
Cf. A003269.

Programs

  • Magma
    I:=[1, 4, 14, 50]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 06 2012
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-5*x+6*x^2-4*x^3+x^4),{x,0,30}],x] (* Vincenzo Librandi, Apr 06 2012 *)
    LinearRecurrence[{5,-6,4,-1},{1,4,14,50},30] (* Harvey P. Dale, Oct 18 2015 *)
  • Maxima
    a(n):=sum((binomial(n+3*m+1,n-m-1)),m,0,n-1); /* Vladimir Kruchinin, Nov 18 2020 */
  • PARI
    Vec((1-x)/(1-5*x+6*x^2-4*x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012
    

Formula

a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055989(n) = A055991(n)-A055991(n-1) = A055988(n+1)-2*A055988(n)+A055988(n-1).
G.f.: x*(1-x)/(1-5*x+6*x^2-4*x^3+x^4). [Colin Barker, Apr 05 2012]
a(n) = Sum_{m=0..n-1} C(n+3m+1,n-m-1). - Vladimir Kruchinin, Nov 18 2020

Extensions

More terms from James Sellers, Jun 05 2000