A056001 a(n) = (n+1)*binomial(n+7, 7).
1, 16, 108, 480, 1650, 4752, 12012, 27456, 57915, 114400, 213928, 381888, 655044, 1085280, 1744200, 2728704, 4167669, 6229872, 9133300, 13156000, 18648630, 26048880, 35897940, 48859200, 65739375, 87512256, 115345296, 150629248, 195011080, 250430400, 319159632
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (n+1)*Binomial(n+7,7)); # G. C. Greubel, Aug 29 2019
-
Haskell
a056001 n = (n + 1) * a007318' (n + 7) 7 -- Reinhard Zumkeller, Aug 31 2014
-
Magma
[(n+1)*Binomial(n+7,7): n in [0..30]]; // G. C. Greubel, Aug 29 2019
-
Maple
seq((n+1)*binomial(n+7,7), n=0..30); # G. C. Greubel, Aug 29 2019
-
Mathematica
Table[(n+1)Binomial[n+7, 7], {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011; corrected by Bruno Berselli, Jan 23 2015 *)
-
PARI
vector(30, n, n*binomial(n+6,7)) \\ G. C. Greubel, Aug 29 2019
-
Sage
[(n+1)*binomial(n+7,7) for n in (0..30)] # G. C. Greubel, Aug 29 2019
Formula
G.f.: (1+7*x)/(1-x)^9.
E.g.f.: (5040 +75600*x +194040*x^2 +170520*x^3 +66150*x^4 +12642*x^5 + 1225*x^6 +57*x^7 +x^8)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 7*Pi^2/6 - 37583/3600.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2/12 - 2912*log(2)/15 + 155701/1200. (End)
Comments