cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056001 a(n) = (n+1)*binomial(n+7, 7).

Original entry on oeis.org

1, 16, 108, 480, 1650, 4752, 12012, 27456, 57915, 114400, 213928, 381888, 655044, 1085280, 1744200, 2728704, 4167669, 6229872, 9133300, 13156000, 18648630, 26048880, 35897940, 48859200, 65739375, 87512256, 115345296, 150629248, 195011080, 250430400, 319159632
Offset: 0

Views

Author

Barry E. Williams, Jun 18 2000

Keywords

Comments

Original name: A second-order recursive sequence.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A052226.
Cf. A093565 ((8, 1) Pascal, column m=8).

Programs

Formula

G.f.: (1+7*x)/(1-x)^9.
a(n) = A245334(n+7,7)/A000142(7). - Reinhard Zumkeller, Aug 31 2014
a(n) = A000581(n+8)+7*A000581(n+7). - R. J. Mathar, Oct 24 2014
E.g.f.: (5040 +75600*x +194040*x^2 +170520*x^3 +66150*x^4 +12642*x^5 + 1225*x^6 +57*x^7 +x^8)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 7*Pi^2/6 - 37583/3600.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2/12 - 2912*log(2)/15 + 155701/1200. (End)