cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A056014 a(n) = (Fibonacci(2n-1) - Fibonacci(n+1))/2.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 38, 106, 288, 771, 2046, 5401, 14212, 37324, 97904, 256621, 672336, 1760997, 4611642, 12075526, 31617520, 82781215, 216732890, 567428401, 1485570024, 3889310328, 10182407328, 26657986681, 69791674108
Offset: 0

Views

Author

Asher Auel, Jun 06 2000

Keywords

Comments

With a(0)=0, a(1)=1, a(2)=1, a(3)=2, this recurrence produces a(n)=A000045(n) (Fibonacci numbers).
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 4. - Herbert Kociemba, Jun 16 2004

Crossrefs

a(1-2n)=A059512(2n), a(-2n)=A027994(2n-1).

Programs

  • Magma
    I:=[0, 0, 0, 1]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
  • Mathematica
    Table[(Fibonacci[2n-1]-Fibonacci[n+1])/2,{n,0,40}]  (* Harvey P. Dale, Mar 24 2011 *)
    LinearRecurrence[{4,-3,-2,1},{0,0, 0,1},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n)=(fibonacci(2*n-1)-fibonacci(n+1))/2
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4), a(0)=a(1)=a(2)=0, a(3)=1.
Convolution of Fibonacci numbers F(n) with F(2n). - Benoit Cloitre, Jun 07 2004
G.f.: x^3/((1 - x - x^2)*(1 - 3*x + x^2)). - Herbert Kociemba, Jun 16 2004
Binomial transform of x^3/(1-3x^2+x^4), or (essentially) F(2n) with interpolated zeros. a(n)=sum{k=0..n, binomial(n, k)((3/2-sqrt(5)/2)^(k/2)((sqrt(5)/20+1/4)(-1)^k-sqrt(5)/20-1/4)+ (sqrt(5)/2+3/2)^(k/2)((sqrt(5)/20-1/4)(-1)^k-sqrt(5)/20+1/4))}. - Paul Barry, Jul 26 2004
Convolution of the powers of 2 (A000079) with the number of positive rational knots with 2n+1 crossings (A051450), with three leading zeros. - Graeme McRae, Jun 28 2006
a(n) = (A001519(n) - A000045(n+1))/2. - R. J. Mathar, Jun 24 2011
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A094966(k-1) (Othsuka, 2024). - Amiram Eldar, Feb 29 2024

A108140 a(n) = 4*a(n-1) -3*a(n-2) -2*a(n-3) +a(n-4), n>8.

Original entry on oeis.org

1, 1, 1, 1, 0, 4, 17, 55, 161, 449, 1220, 3266, 8667, 22879, 60203, 158107, 414728, 1087064, 2848061, 7459703, 19535229, 51152749, 133933964, 350666854, 918095255, 2403665279, 6292975607, 16475382935, 43133369616, 112925043724
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2005

Keywords

Crossrefs

Programs

  • Mathematica
    F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 1; F[n__] := F[n] = 4*F[n - 1] - 3*F[n - 2] - 2*F[n - 3] + F[n - 4] a = Table[Abs[F[n]], {n, 1, 50}]

Formula

a(n) = -A000045(n+2)/2 + A001906(n-1)/2, n>3. [Sep 28 2009]
G.f.: (-1+2*x^7-2*x^6-8*x^5-2*x^3+3*x)/((x^2+x-1)*(x^2-3*x+1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009

A108142 a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[6] = 1; for n >= 7, a[n] = 6*a[n - 1] - 5*a[n - 2] - 4*a[n - 3] - 3*a[ n - 4] + 2*a[n - 5] + a[n - 6]; then take absolute values.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 27, 151, 759, 3679, 17599, 83767, 397943, 1889059, 8964891, 42539855, 201849743, 957752095, 4544385823, 21562354767, 102309686479, 485441784803, 2303337053819, 10928934112423, 51855892302151
Offset: 1

Views

Author

Roger L. Bagula, Jun 05 2005

Keywords

Comments

The 2nd countdown sequence.

References

  • Roger Bagula, Factoring Double Fibonacci Sequences, 2000

Crossrefs

Programs

  • Mathematica
    F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 1; F[5] = 1; F[6] = 1; F[n__] := F[n] = 6*F[n - 1] - 5*F[n - 2] - 4*F[n - 3] - 3*F[ n - 4] + 2*F[n - 5] + F[n - 6] a = Table[Abs[F[n]], {n, 1, 50}]
    LinearRecurrence[{6,-5,-4,-3,2,1},{1,1,1,1,1,1,3,27,151,759,3679,17599},30] (* Harvey P. Dale, Apr 25 2018 *)

Extensions

Edited by N. J. A. Sloane, Jun 08 2007

A108143 a(n)= 5*a(n-1) -a(n-2) -a(n-3).

Original entry on oeis.org

1, 1, 1, 3, 13, 61, 289, 1371, 6505, 30865, 146449, 694875, 3297061, 15643981, 74227969, 352198803, 1671122065, 7929183553, 37622596897, 178512678867, 847011613885, 4018922793661, 19069089675553, 90479513970219
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2005

Keywords

References

  • Roger Bagula, Factoring Double Fibonacci Sequences, 2000

Crossrefs

Programs

  • Mathematica
    F[1] = 1; F[2] = 1; F[3] = 1; F[n__] := F[n] = 5*F[n - 1] - F[n - 2] - F[n - 3] a = Table[Abs[F[n]], {n, 1, 50}]
    LinearRecurrence[{5,-1,-1},{1,1,1},30] (* Harvey P. Dale, Jan 21 2023 *)

Formula

G.f.: (1-4*x-3*x^2)/(1-5*x+x^2+x^3) [Sep 28 2009]

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-4 of 4 results.