cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056045 a(n) = Sum_{d|n} binomial(n,d).

Original entry on oeis.org

1, 3, 4, 11, 6, 42, 8, 107, 94, 308, 12, 1718, 14, 3538, 3474, 14827, 18, 68172, 20, 205316, 117632, 705686, 24, 3587174, 53156, 10400952, 4689778, 41321522, 30, 185903342, 32, 611635179, 193542210, 2333606816, 7049188, 10422970784, 38
Offset: 1

Views

Author

Labos Elemer, Jul 25 2000

Keywords

Examples

			A(x) = log(1/(1-x) * G(x^2,2) * G(x^3,3) * G(x^4,4) * ...)
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4; etc.
		

Crossrefs

Cf. A110448 (exp(A(x))); A000108 (Catalan numbers), A001764, A002293, A174462.
Cf. A000010 (comments on Dirichlet sum formulas).
Cf. A308943 (similar, with Product).

Programs

  • Haskell
    a056045 n = sum $ map (a007318 n) $ a027750_row n
    -- Reinhard Zumkeller, Aug 13 2013
    
  • Mathematica
    f[n_] := Sum[ Binomial[n, d], {d, Divisors@ n}]; Array[f, 37] (* Robert G. Wilson v, Apr 23 2005 *)
    Total[Binomial[#,Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Dec 08 2018 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,log(1/x*serreverse(x/(1+x^m +x*O(x^n))))),n)} /* Paul D. Hanna, Nov 10 2007 */
    
  • PARI
    {a(n)=sumdiv(n,d,binomial(n,d))} /* Paul D. Hanna, Nov 10 2007 */
    
  • Python
    from math import comb
    from sympy import divisors
    def A056045(n): return sum(comb(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 22 2024

Formula

L.g.f.: A(x) = Sum_{n>=1} log( G(x^n,n) ) where G(x,n) = 1 + x*G(x,n)^n. L.g.f. A(x) satisfies: exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 10 2007
a(n) = Sum_{k=1..A000005(n)} A007318(n, A027750(k)). - Reinhard Zumkeller, Aug 13 2013
a(n) = Sum_{k=1..n} binomial(n,gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(n,n/gcd(n,k))/phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, Nov 08 2021
a(n) = n+1 iff n is prime. - Bernard Schott, Nov 30 2021