A056074
Number of 3-element ordered antichain covers of an unlabeled n-element set.
Original entry on oeis.org
2, 17, 71, 212, 518, 1106, 2142, 3852, 6534, 10571, 16445, 24752, 36218, 51716, 72284, 99144, 133722, 177669, 232883, 301532, 386078, 489302, 614330, 764660, 944190, 1157247, 1408617, 1703576
Offset: 3
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- K. S. Brown, Dedekind's problem
- Eric Weisstein's World of Mathematics, Antichain covers
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
-
[n*(n^5 + 21*n^4 - 5*n^3 - 345*n^2 + 724*n - 396)/720: n in [3..25]]; // G. C. Greubel, Oct 06 2017
-
A056074:=n->n*(n^5 + 21*n^4 - 5*n^3 - 345*n^2 + 724*n - 396)/720: seq(A056074(n), n=3..60); # Wesley Ivan Hurt, Oct 06 2017
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{2,17,71,212,518,1106,2142},30] (* or *) Table[Binomial[n+6,6]-6Binomial[n+4,4]+6Binomial[n+3,3]+ 3Binomial[n+2,2]- 6Binomial[n+1,1]+ 2Binomial[n,0],{n,3,30}] (* Harvey P. Dale, Jul 12 2011 *)
-
a(n)=n*(n^5 + 21*n^4 - 5*n^3 - 345*n^2 + 724*n - 396)/720 \\ Charles R Greathouse IV, Feb 19 2017
A056090
Number of 4-element ordered antichain covers of an unlabeled n-element set.
Original entry on oeis.org
25, 429, 3364, 17602, 71385, 242347, 720792, 1934076, 4777337, 11021713, 24008532, 49790614, 98954626, 189457350, 350941064, 631167840, 1105440045, 1890167329, 3162113836, 5185330818, 8348369731, 13215102985, 20593381200, 31626858540, 47916657405, 71681161365
Offset: 4
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- K. S. Brown, Dedekind's problem
- Eric Weisstein's World of Mathematics, Antichain covers
- Index entries for linear recurrences with constant coefficients, signature (15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1).
-
[(-104270181120*n + 236073062016*n^2 - 169534943760*n^3 + 28403538800*n^4 + 12862329480*n^5 - 2983956976*n^6 - 613678065*n^7 + 39763295*n^8 + 21456435*n^9 + 2461459*n^10 + 143325*n^11 + 5005*n^12 + 105*n^13 + n^14)/Factorial(14): n in [4..50]]; // G. C. Greubel, Oct 06 2017
-
Table[(-104270181120 n + 236073062016 n^2 - 169534943760 n^3 + 28403538800 n^4 + 12862329480 n^5 - 2983956976 n^6 - 613678065 n^7 + 39763295 n^8 + 21456435 n^9 + 2461459 n^10 + 143325 n^11 + 5005 n^12 + 105 n^13 + n^14)/(14)!, {n, 4, 50}] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{25,429,3364,17602,71385,242347,720792,1934076,4777337,11021713,24008532,49790614,98954626,189457350,350941064},30] (* Harvey P. Dale, Dec 09 2021 *)
-
for(n=4,50, print1((-104270181120*n + 236073062016*n^2 - 169534943760*n^3 + 28403538800*n^4 + 12862329480*n^5 - 2983956976*n^6 - 613678065*n^7 + 39763295*n^8 + 21456435*n^9 + 2461459*n^10 + 143325*n^11 + 5005*n^12 + 105*n^13 + n^14)/(14)!, ", ")) \\ G. C. Greubel, Oct 06 2017
A056164
Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges.
Original entry on oeis.org
1, 2, 6, 109, 191177
Offset: 1
There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
Cf.
A056074,
A056090,
A056093,
A000372,
A056005,
A056069-
A056071,
A056073,
A056046-
A056049,
A056052,
A056101,
A056104,
A051112-
A051118.
Showing 1-3 of 3 results.
Comments