cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006126 Number of hierarchical models on n labeled factors or variables with linear terms forced. Also number of antichain covers of a labeled n-set.

Original entry on oeis.org

2, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Keywords

Comments

An antichain cover is a cover such that no element of the cover is a subset of another element of the cover.
Also, the number of nondegenerate monotone Boolean functions of n variables in an n-variable Boolean algebra. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
Also, number of simplicial complexes on an n-element vertex set. - Richard Stanley, Feb 10 2019
There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A006602. The non-covering case is A000372, which is A014466 plus 1. - Gus Wiseman, Mar 31 2019
From Petros Hadjicostas, Apr 10 2020: (Start)
Hierarchical models are always nonempty because they always include an intercept (or overall effect).
The total number of log-linear hierarchical models on n labeled factors (categorical variables) with no forcing of terms is given by A000372(n) - 1 (Dedekind numbers minus 1).
Hierarchical log-linear models for analyzing contingency tables are defined in the classic book by Bishop, Fienberg, and Holland (1975). (End)

Examples

			a(5) = 1 + 90 + 790 + 1895 + 2116 + 1375 + 490 + 115 + 20 + 2 = 6894.
There are 9 antichain covers of a labeled 3-set: {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
From _Gus Wiseman_, Feb 23 2019: (Start)
The a(0) = 2 through a(3) = 9 antichains:
  {}    {{1}}  {{12}}    {{123}}
  {{}}         {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 08 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • C. L. Mallows, personal communication.
  • A. A. Mcintosh, personal communication.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables, In Preparation.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn=4;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&]],{n,0,nn}] (* Gus Wiseman, Feb 23 2019 *)
    A000372 = Cases[Import["https://oeis.org/A000372/b000372.txt", "Table"], {, }][[All, 2]];
    lg = Length[A000372];
    a372[n_] := If[0 <= n <= lg-1, A000372[[n+1]], 0];
    a[n_] := Sum[(-1)^(n-k+1) Binomial[n, k-1] a372[k-1], {k, 0, lg}];
    a /@ Range[0, lg-1] (* Jean-François Alcover, Jan 07 2020 *)

Formula

a(n) = Sum_{k = 1..C(n, floor(n/2))} b(k, n), where b(k, n) is the number of k-antichain covers of a labeled n-set.
Inverse binomial transform of A000372. - Gus Wiseman, Feb 24 2019

Extensions

Last 3 terms from Michael Bulmer (mrb(AT)maths.uq.edu.au)
Antichain interpretation from Vladeta Jovovic and Goran Kilibarda, Jul 31 2000
a(0) = 2 added by Gus Wiseman, Feb 23 2019
Name edited by Petros Hadjicostas, Apr 08 2020
a(9) using A000372 added by Bruno L. O. Andreotti, May 14 2023

A306550 Array read by antidiagonals where A(n,k) is the number of labeled k-antichains covering n vertices.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 6, 0, 0, 0, 0, 1, 25, 2, 0, 0, 0, 0, 1, 90, 56, 0, 0, 0, 0, 0, 1, 301, 790, 25, 0, 0, 0, 0, 0, 1, 966, 8380, 1895, 6, 0, 0, 0, 0, 0, 1, 3025, 76482, 70370, 2116, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 23 2019

Keywords

Examples

			Array begins:
    n=0: n=1: n=2: n=3: n=4: n=5:
---------------------------------
k=0:  1    0    0    0    0    0
k=1:  1    1    1    1    1    1
k=2:  0    0    1    6   25   90
k=3:  0    0    0    2   56  790
k=4:  0    0    0    0   25 1895
k=5:  0    0    0    0    6 2116
Column n = 3 counts the following antichains:
  {{123}}  {{1}{23}}   {{1}{2}{3}}
           {{2}{13}}   {{12}{13}{23}}
           {{3}{12}}
           {{12}{13}}
           {{12}{23}}
           {{13}{23}}
		

Crossrefs

Column sums are A006126. Row k = 2 is A000392. Rows k = 3-9 are A056046-A056049, A056052, A056101, A056104.

Programs

  • Mathematica
    nn=8;
    stableSets[u_,Q_,k_]:=If[k==0,{{}},If[Length[u]==0,{},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q,k],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q,k-1]]]]];
    ae[n_,k_]:=Length[Select[stableSets[Subsets[Range[n]],SubsetQ,k],Union@@#==Range[n]&]];
    Table[ae[k,n-k],{n,0,nn},{k,0,n}]

A056163 Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges.

Original entry on oeis.org

2, 3, 5, 11, 120, 191297
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297.
There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A000372 for (unordered) antichains on a labeled n-set, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118.

Formula

a(n)=Sum_{k=0..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains on an unlabeled n-set.

A056164 Number of ordered antichain covers of an unlabeled n-set; labeled T_1-hypergraphs (without empty hyperedges) with n hyperedges.

Original entry on oeis.org

1, 2, 6, 109, 191177
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			There are 6 ordered antichain covers on an unlabeled 3-set: ({1,2,3}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
a(3)=1+3+2=6; a(4)=1+6+17+25+30+30=109; a(5)=1+10+71+429+2176+8310+20580+38640+60480+60480=191177.
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n)=Sum_{k=1..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains covers of an unlabeled n-set.
Showing 1-4 of 4 results.