A056108 Fourth spoke of a hexagonal spiral.
1, 5, 15, 31, 53, 81, 115, 155, 201, 253, 311, 375, 445, 521, 603, 691, 785, 885, 991, 1103, 1221, 1345, 1475, 1611, 1753, 1901, 2055, 2215, 2381, 2553, 2731, 2915, 3105, 3301, 3503, 3711, 3925, 4145, 4371, 4603, 4841, 5085, 5335, 5591, 5853, 6121, 6395
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Henry Bottomley, Illustration of initial terms
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[3*n^2+n+1: n in [0..50]]; // Bruno Berselli, Mar 13 2013
-
Mathematica
Table[3 n^2 + n + 1, {n, 0, 50}] (* Bruno Berselli, Mar 13 2013 *) LinearRecurrence[{3,-3,1},{1,5,15},50] (* Harvey P. Dale, Dec 26 2023 *)
-
PARI
a(n)=3*n^2+n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*n^2 + n + 1.
a(n) = a(n-1) + 6*n - 2 = 2*a(n-1) - a(n-2) + 6
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A096777(3n+1) . - Reinhard Zumkeller, Dec 29 2007
a(n) = 6*n+a(n-1)-2 with n>0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: (1+2*x+3*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
a(-n) = A056106(n). - Bruno Berselli, Mar 13 2013
E.g.f.: (3*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jul 19 2017
Comments