cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056114 Expansion of (1+9*x)/(1-x)^11.

Original entry on oeis.org

1, 20, 165, 880, 3575, 12012, 35035, 91520, 218790, 486200, 1016158, 2015520, 3821090, 6963880, 12257850, 20920064, 34730575, 56241900, 89049675, 138138000, 210315105, 314757300, 463681725, 673171200, 964177500, 1363732656, 1906401420, 2636011840, 3607704980
Offset: 0

Views

Author

Barry E. Williams, Jun 12 2000

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n+1)*Binomial(n+9, 9)); # G. C. Greubel, Jan 18 2020
  • Haskell
    a056114 n = (n + 1) * a007318' (n + 9) 9
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [(n+1)*Binomial(n+9, 9): n in [0..40]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    a:=n->(sum((numbcomp(n,10)), j=10..n)):seq(a(n), n=10..34); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    CoefficientList[Series[(1+9x)/(1-x)^11,{x,0,40}],x] (* or *) LinearRecurrence[ {11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,20,165,880,3575,12012,35035, 91520,218790,486200,1016158},40] (* Harvey P. Dale, Jun 05 2018 *)
  • PARI
    vector(41, n, n*binomial(n+8, 9) ) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [(n+1)*binomial(n+9, 9) for n in (0..40)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = (n+1)*binomial(n+9, 9).
G.f.: (1+9*x)/(1-x)^11.
a(n) = A245334(n+9,9)/A000142(9). - Reinhard Zumkeller, Aug 31 2014
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 10*binomial(n+10,10) - 9*binomial(n+9,9).
E.g.f.: (9! +6894720*x +22861440*x^2 +26853120*x^3 +14605920*x^4 + 4191264*x^5 +677376*x^6 +63072*x^7 +3321*x^8 +91*x^9 +x^10)*exp(x)/9!. (End)
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 3*Pi^2/2 - 1077749/78400.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/4 - 24576*log(2)/35 + 37652469/78400. (End)