A056623 If n=LLgggf (see A056192) and a(n) = LL, then its complementary divisor n/LL = gggf and gcd(L^2, n/LL) = 1.
1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 1, 25, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 1, 49, 9
Offset: 1
Examples
a(200) = A008833(200)/A055229(200)^2 = 100/2^2 = 25. a(250) = A008833(250)/A055229(250)^2 = 25/5^2 = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[p_, 1] := 1; f[p_, e_] := If[EvenQ[e], p^e, p^(e-3)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
-
PARI
A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ Charles R Greathouse IV, Nov 20 2012 A008833(n) = n/core(n) \\ Michael B. Porter, Oct 17 2009 A056623(n) = (A008833(n)/(A055229(n)^2)); \\ Antti Karttunen, Nov 19 2017
-
PARI
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e == 1, 1, if(e%2, p^(e-3), p^e)));} \\ Amiram Eldar, Dec 25 2023
-
Scheme
(definec (A056623 n) (if (= 1 n) n (let ((e (A067029 n)) (rest (A056623 (A028234 n)))) (cond ((even? e) (* (A028233 n) rest)) ((= 1 e) rest) (else (* (expt (A020639 n) (- e 3)) rest)))))) ;; After Jovovic's multiplicative formula, using memoization-macro definec - Antti Karttunen, Nov 19 2017
Formula
a(n) = A008833(n)/A055229(n)^2 = K^2/g^2, which coincides with the largest square divisor iff the g-factor is 1.
Multiplicative with a(p^e)=p^e for even e, a(p)=1, a(p^e)=p^(e-3) for odd e > 1. - Vladeta Jovovic, Apr 30 2002
From Amiram Eldar, Dec 25 2023 (Start)
Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-2) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = Product_{p prime} (1 + 1/p^(3/2) - 1/p^(5/2) + 1/p^(9/2)) = 1.81133051934001073532... . (End)
a(n) = A056622(n)^2. - Amiram Eldar, Jul 26 2024
Extensions
Name edited by Amiram Eldar, Jul 26 2024
Comments