cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of n-bead necklace structures using exactly k different colored beads. Turning over the necklace is not allowed. Permuting the colors does not change the structure. - Andrew Howroyd, Apr 06 2017

Examples

			Triangle begins with T(1,1):
  1;
  1,   1;
  1,   1,     1;
  1,   3,     2,      1;
  1,   3,     5,      2,      1;
  1,   7,    18,     13,      3,      1;
  1,   9,    43,     50,     20,      3,      1;
  1,  19,   126,    221,    136,     36,      4,      1;
  1,  29,   339,    866,    773,    296,     52,      4,     1;
  1,  55,   946,   3437,   4281,   2303,    596,     78,     5,    1;
  1,  93,  2591,  13250,  22430,  16317,   5817,   1080,   105   , 5,   1;
  1, 179,  7254,  51075, 115100, 110462,  52376,  13299,  1873,  147,   6, 1;
  1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;
  ...
For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.
For T(4,3)=2, the set partitions are AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056295, A056296, A056297, A056298, A056299.
Row sums are A084423.
Partial row sums include A000013, A002076, A056292, A056293, A056294.
Cf. A075195, A087854, A008277 (set partitions), A284949 (up to reflection), A152176 (up to rotation and reflection).
A(1,n,k) in formula is the Stirling subset number A008277.
A(2,n,k) in formula is A293181; A(3,n,k) in formula is A294201.

Programs

  • Mathematica
    (* Using recursion formula from Gilbert and Riordan:*)
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],
       {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018

A056354 Number of bracelet structures using a maximum of four different colored beads.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 33, 73, 237, 703, 2433, 8309, 30108, 108991, 403262, 1497070, 5607437, 21076571, 79595990, 301492045, 1145560579, 4363503684, 16660204452, 63741248201, 244339646708, 938255682551, 3608668388957, 13900021844558, 53614340398327, 207062143625711
Offset: 0

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
a(n) = Sum_{k=1..4} A152176(n, k) for n > 0. - Andrew Howroyd, Oct 25 2019

Extensions

a(0)=1 prepended and terms a(26) and beyond from Andrew Howroyd, Oct 25 2019

A056297 Number of n-bead necklace structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 50, 221, 866, 3437, 13250, 51075, 194810, 742651, 2823766, 10738881, 40843370, 155494751, 592614050, 2261625725, 8643289534, 33080920607, 126797503250, 486710971595, 1870851589554, 7201014763285, 27752927359726, 107092397450897
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &], Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 4], {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[ Divisible[#,12], StirlingS2[n/#+3,4] - 3 StirlingS2[n/#+2,4] + 2 StirlingS2[n/#+1,4], Divisible[#,6], 3 StirlingS2[n/#+2,4] - 9 StirlingS2[n/#+1,4] + 6 StirlingS2[n/#,4], Divisible[#,4], StirlingS2[n/#+3,4] - 5 StirlingS2[n/#+2,4] + 10 StirlingS2[n/#+1,4] - 8 StirlingS2[n/#,4], Divisible[#,3], 2 StirlingS2[n/#+2,4] - 8 StirlingS2[n/#+1,4] + 9 StirlingS2[n/#,4], Divisible[#,2], StirlingS2[n/#+2,4] - StirlingS2[n/#+1,4] - 2 StirlingS2[n/#,4], True, StirlingS2[n/#,4]] &],{n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[ Divisible[d, 12], Log[1-4x^d] - Log[1-3x^d], Divisible[d, 6], (3 Log[1-4x^d] - 4 Log[1-3x^d]) / 4, Divisible[d, 4], (2 Log[1-4x^d] - 2 Log[1-3x^d] + Log[1-x^d]) / 3, Divisible[d, 3], (3 Log[1-4x^d] - 4 Log[1-3x^d] + 2 Log[1-2x^d] - 4 Log[1-x^d]) / 8, Divisible[d, 2], (5 Log[1-4x^d] - 8 Log[1-3x^d] + 4 Log[1-x^d]) / 12, True, (Log[1-4x^d] - 4 Log[1-3x^d] + 6 Log[1-2x^d] - 4 Log[1-x^d]) / 24], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056292(n) - A002076(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 12] * (S2(n/d + 3, 4) - 3*S2(n/d+2,4) + 2*S2(n/d + 1, 4)) + [d==6 mod 12] * (3*S2(n/d + 2, 4) - 9*S2(n/d + 1, 4) + 3*S2(n/d, 4)) + [d==4 mod 12 | d==8 mod 12] * (S2(n/d + 3, 4) - 5*S2(n/d + 2, 4) - 10*S2(n/d + 1, 4) - 8*S2(n/d, 4)) + [d==3 mod 12 | d=9 mod 12] * (2*S2(n/d + 2, 4) - 8*S2(n/d + 1, 4) - 2*S2(n/d,4)) + [d==2 mod 12 | d==10 mod 12] * (S2(n/d + 2, 4) - S2(n/d + 1, 4) + 9*S2(n/d, 4)) + [d mod 12 in {1,5,7,11}] * S2(n/d, 4)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 12] * (log(1-4x^d) - log(1-3x^d)) +[d==6 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d)) / 4 + [d==4 mod 12 | d==8 mod 12] * (2*log(1-4x^d) - 2*log(1-3x^d) + log(1-x^d)) / 3 + [d==3 mod 12 | d==9 mod 12] * (3*log(1-4x^d) - 4*log(1-3x^d) + 2*log(1-2x^d) - 4*log(1-x^d)) / 8 + [d==2 mod 12 | d=10 mod 12] * (5*log(1-4x^d) - 8*log(1-3x^d) + 4*log(1-x^d)) / 12 + [d mod 12 in {1,5,7,11}] * (log(1-4x^d) - 4*log(1-3x^d) + 6*log(1-2x^d) - 4*log(1-x^d)) / 24).
(End)

A305750 Number of achiral color patterns (set partitions) in a row or cycle of length n with 4 or fewer colors (subsets).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 27, 43, 107, 171, 427, 683, 1707, 2731, 6827, 10923, 27307, 43691, 109227, 174763, 436907, 699051, 1747627, 2796203, 6990507, 11184811, 27962027, 44739243, 111848107, 178956971, 447392427, 715827883, 1789569707, 2863311531, 7158278827
Offset: 0

Views

Author

Robert A. Russell, Jun 09 2018

Keywords

Comments

An equivalent color pattern is obtained when we permute the colors. Thus all permutations of ABCD are equivalent, as are AABCD and BBCDA. A color pattern is achiral if it is equivalent to its reversal. Rotations of the colors of a cycle are equivalent, so for cycles AABBCD = BBCDAA = CDAABB.

Examples

			For a(4) = 7, the achiral row patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD. The cycle patterns are AAAA, AAAB, AABB, ABAB, AABC, ABAC, and ABCD.
		

Crossrefs

Fourth column of A305749.
Cf. A124303 (oriented), A056323 (unoriented), A320934 (chiral), for rows.
Cf. A056292 (oriented), A056354 (unoriented), A320744 (chiral), for cycles.

Programs

  • GAP
    a:=[1,2,3];; for n in [4..40] do a[n]:=a[n-1]+4*a[n-2]-4*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 28 2018
  • Maple
    seq(coeff(series((1-3*x^2+x^3)/((1-x)*(1-4*x^2)),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[If[EvenQ[n], StirlingS2[(n+8)/2, 4] - 8 StirlingS2[(n+6)/2, 4] + 22 StirlingS2[(n+4)/2, 4] - 23 StirlingS2[(n+2)/2, 4] + 6 StirlingS2[n/2, 4], StirlingS2[(n+7)/2, 4] - 7 StirlingS2[(n+5)/2, 4] + 16 StirlingS2[(n+3)/2, 4] - 12 StirlingS2[(n+1)/2, 4]], {n, 0, 40}]
    Ach[n_, k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]]; (* A304972 *)
    k=4; Table[Sum[Ach[n, j], {j, 0, k}], {n, 0, 40}]
    (* or *)
    CoefficientList[Series[(1-3x^2+x^3)/((1-x)(1-4x^2)), {x,0,40}], x]
    (* or *)
    Join[{1},LinearRecurrence[{1,4,-4},{1,2,3},40]]
    (* or *)
    Join[{1},Table[If[EvenQ[n], (4+5 4^(n/2))/12, (2+4^((n+1)/2))/6], {n,40}]]

Formula

a(n) = Sum_{j=0..4} Ach(n,j), where Ach(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [0<=n<2 & n==k].
G.f.: (1 - 3x^2 + x^3) / ((1-x) * (1-4x^2)).
a(2m) = S2(m+4,4) - 8*S2(m+3,4) + 22*S2(m+2,4) - 23*S2(m+1,4) + 6*S2(m,4);
a(2m-1) = S2(m+3,4) - 7*S2(m+2,4) + 16*S2(m+1,4) - 12*S2(m,4), where S2(n,k) is the Stirling subset number A008277.
For m>0, a(2m) = (4 + 5*4^m) / 12.
a(2m-1) = (2 + 4^m) / 6.
a(n) = 2*A056323(n) - A124303(n) = A124303(n) - 2*A320934(n) = A056323(n) - A320934(n).
a(n) = 2*A056354(n) - A056292(n) = A056292(n) - 2*A320744(n) = A056354(n) - A320744(n).
a(n) = A057427(n) + A052551(n-2) + A304973(n) + A304974(n).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3). - Muniru A Asiru, Oct 28 2018

A056298 Number of n-bead necklace structures using exactly five different colored beads.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 20, 136, 773, 4281, 22430, 115100, 577577, 2863227, 14051164, 68515514, 332514803, 1608800691, 7767857090, 37460388596, 180536313547, 869901397479, 4192038616700, 20208367895980
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A152175.

Programs

  • Mathematica
    From Robert A. Russell, May 29 2018: (Start)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Table[Coefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/n , x, 5],
      {n, 1, 40}] (* after Gilbert and Riordan *)
    Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 60], StirlingS2[n/#+4, 5] - 6 StirlingS2[n/#+3, 5] + 11 StirlingS2[n/#+2, 5] - 6 StirlingS2[n/#+1, 5], Divisible[#, 30], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 26 StirlingS2[n/#+2, 5] - 43 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 20], StirlingS2[n/#+4, 5] - 8 StirlingS2[n/#+3, 5] + 23 StirlingS2[n/#+2, 5] - 24 StirlingS2[n/#+1, 5], Divisible[#, 15], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 65 StirlingS2[n/#+1, 5] + 45 StirlingS2[n/#, 5], Divisible[#, 12], 4 StirlingS2[n/#+3, 5] - 24 StirlingS2[n/#+2, 5] + 44 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 10], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 38 StirlingS2[n/#+2, 5] - 61 StirlingS2[n/#+1, 5] + 30 StirlingS2[n/#, 5], Divisible[#, 6], 2 StirlingS2[n/#+3, 5] - 9 StirlingS2[n/#+2, 5] + 7 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], Divisible[#, 5], StirlingS2[n/#+4, 5] - 10 StirlingS2[n/#+3, 5] + 35 StirlingS2[n/#+2, 5] - 50 StirlingS2[n/#+1, 5] + 25 StirlingS2[n/#, 5], Divisible[#, 4], 2 StirlingS2[n/#+3, 5] - 12 StirlingS2[n/#+2, 5] + 26 StirlingS2[n/#+1, 5] - 24 StirlingS2[n/#, 5], Divisible[#, 3], 3 StirlingS2[n/#+2, 5] - 15 StirlingS2[n/#+1, 5] + 21 StirlingS2[n/#, 5], Divisible[#, 2], 3 StirlingS2[n/#+2, 5] - 11 StirlingS2[n/#+1, 5] + 6 StirlingS2[n/#, 5], True, StirlingS2[n/#, 5]] &], {n, 1, 40}]
    mx = 40; Drop[CoefficientList[Series[-Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 60], Log[1 - 5x^d] - Log[1 - 4x^d], Divisible[d, 30],
      (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + Log[1 - x^d]) / 4, Divisible[d, 20],
      (2 Log[1 - 5x^d] - 2 Log[1 - 4x^d] + Log[1 - 2x^d] - Log[1 - x^d]) / 3,
      Divisible[d, 15], (3 Log[1 - 5x^d] - 3 Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + 3 Log[1 - x^d]) / 8, Divisible[d, 12],
      (4 Log[1 - 5x^d] - 5 Log[1 - 4x^d]) / 5, Divisible[d, 10],
      (5 Log[1 - 5x^d] - 5 Log[1 - 4x^d] + 4 Log[1 - 2x^d] - Log[1 - x^d]) / 12,
      Divisible[d, 6], (11 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 5 Log[1 - x^d]) /
      20, Divisible[d, 5], (5 Log[1 - 5x^d] - Log[1 - 4x^d] + 2 Log[1 - 3x^d] -
      2 Log[1 - 2x^d] + Log[1 - x^d]) / 24, Divisible[d, 4], (7 Log[1 - 5x^d] -
      10 Log[1 - 4x^d] + 5 Log[1 - 2x^d] - 5 Log[1 - x^d]) / 15,
      Divisible[d, 3], (7 Log[1 - 5x^d] - 15 Log[1 - 4x^d] + 10 Log[1 - 3x^d] -
      10 Log[1 - 2x^d] + 15 Log[1 - x^d]) / 40, Divisible[d, 2],
      (13 Log[1 - 5x^d] - 25 Log[1 - 4x^d] + 20 Log[1 - 2x^d] -
      5 Log[1 - x^d]) / 60, True, (Log[1 - 5x^d] - 5 Log[1 - 4x^d] +
      10 Log[1 - 3x^d] - 10 Log[1 - 2x^d] + 5 Log[1 - x^d]) / 120], {d, 1, mx}], {x, 0, mx}], x], 1]
    (End)

Formula

a(n) = A056293(n) - A056292(n).
From Robert A. Russell, May 29 2018: (Start)
a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 60] * (S2(n/d+4,5) -
6*S2(n/d+3,5) + 11*S2(n/d+2,5) - 6*S2(n/d+1,5)) + [d==30 mod 60] *
(S2(n/d+4,5) - 8*S2(n/d+3,5) + 26*S2(n/d+2,5) - 43*S2(n/d+1,5) +
30*S2(n/d,5)) + [d==20 mod 60 | d==40 mod 60] * (S2(n/d+4,5) -
8*S2(n/d+3,5) + 23*S2(n/d+2,5) - 24*S2(n/d+1,5)) + [d==15 mod 60 |
d==45 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) + 38*S2(n/d+2,5) -
65*S2(n/d+1,5) + 45*S2(n/d,5)) + [d mod 60 in {12,24,36,48}] *
(4*S2(n/d+3,5) - 24*S2(n/d+2,5) + 44*S2(n/d+1,5) - 24*S2(n/d,5)) +
[d=10 mod 60 | d==50 mod 60] * (S2(n/d+4,5) - 10*S2(n/d+3,5) +
38*S2(n/d+2,5) - 61*S2(n/d+1,5) + 30*S2(n/d,5)) + [d mod 60 in
{6,18,42,54}] * (2*S2(n/d+3,5) - 9*S2(n/d+2,5) + 7*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {5,25,35,55}] * (S2(n/d+4,5) -
10*S2(n/d+3,5) + 35*S2(n/d+2,5) - 50*S2(n/d+1,5) + 25*S2(n/d,5)) +
[d mod 60 in {4,8,16,28,32,44,52,56}] * (2*S2(n/d+3,5) - 12*S2(n/d+2,5) +
26*S2(n/d+1,5) - 24*S2(n/d,5)) + [d mod 60 in {3,9,21,27,33,39,51,57}] *
(3*S2(n/d+2,5) - 15*S2(n/d+1,5) + 21*S2(n/d,5)) + [d mod 60 in
{2,14,22,26,34,38,46,58}] * (3*S2(n/d+2,5) - 11*S2(n/d+1,5) +
6*S2(n/d,5)) + [d mod 60 in {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,
59}] * S2(n/d,5)), where S2(n,k) is the Stirling subset number, A008277.
G.f.: -Sum_{d>0} (phi(d) / d) * ([d==0 mod 60] * (log(1-4x^d) -
log(1-3x^d)) + [d==30 mod 60] * (3*log[1-5x^d) - 3*log(1-4x^d) +
log(1-x^d)) / 4 + [d==20 mod 60 | d==40 mod 60] * (2*log(1-5x^d) -
2*log(1-4x^d) + log(1-2x^d) - log(1-x^d)) / 3 +
[d==15 mod 60 | d==45 mod 60] * (3*log(1-5x^d) - 3*log(1-4x^d) +
2*log(1-3x^d) - 2*log(1-2x^d) + 3*log(1-x^d)) / 8 + [d mod 60 in
{12,24,36,48}] * (4*log(1-5x^d) - 5*log(1-4x^d)) / 5 + [d=10 mod 60 |
d==50 mod 60] * (5*log(1-5x^d) - 5*log(1-4x^d) + 4*log(1-2x^d) -
log(1-x^d)) / 12 + [d mod 60 in {6,18,42,54}] * (11*log(1-5x^d) -
15*log(1-4x^d) + 5*log(1-x^d)) / 20 + [d mod 60 in {5,25,35,55}] *
(5*log(1-5x^d) - log(1-4x^d) + 2*log(1-3x^d) - 2*log(1-2x^d) +
log(1-x^d)) / 24 + [d mod 60 in {4,8,16,28,32,44,52,56}] *
(7*log(1-5x^d) - 10*log(1-4x^d) + 5*log(1-2x^d) - 5*log(1-x^d)) /
15 + [d mod 60 in {3,9,21,27,33,39,51,57}] * (7*log(1-5x^d) -
15*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 15*log(1-x^d)) /
40 + [d mod 60 in {2,14,22,26,34,38,46,58}] * (13*log(1-5x^d) -
25*log(1-4x^d) + 20*log(1-2x^d) - 5*log(1-x^d)) / 60 + [d mod 60 in
{1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}] * (log(1-5x^d) -
5*log(1-4x^d) + 10*log(1-3x^d) - 10*log(1-2x^d) + 5*log(1-x^d)) / 120).
(End)

A056300 Number of primitive (period n) n-bead necklace structures using a maximum of four different colored beads.

Original entry on oeis.org

1, 1, 2, 5, 10, 35, 102, 360, 1232, 4427, 15934, 58465, 215250, 799593, 2983204, 11187200, 42109450, 159081482, 602809326, 2290679807, 8726308212, 33318645341, 127479700198, 488672244040, 1876500180280
Offset: 1

Views

Author

Keywords

Comments

Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d) * A056292(n/d); mu = A008683.

A309673 Number of n-bead necklace structures using a maximum of four different colored beads and no adjacent beads having the same color.

Original entry on oeis.org

0, 1, 1, 3, 2, 9, 13, 41, 94, 257, 671, 1881, 5110, 14301, 39871, 112281, 316520, 897297, 2548819, 7265383, 20754748, 59437181, 170549237, 490338539, 1412147684, 4073528481, 11767897903, 34042917197, 98606864030, 285960106473, 830206177801, 2412787265021
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2019

Keywords

Comments

Colors may be permuted without changing the necklace structure.

Crossrefs

Formula

a(n) = Sum_{k=1..4} A327396(n, k).

Extensions

Terms a(24) and beyond from Andrew Howroyd, Oct 10 2019

A320744 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 4 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 30, 130, 532, 2006, 7626, 28401, 106260, 396435, 1486147, 5580130, 21032880, 79486763, 301317282, 1145123672, 4362804633, 16658456825, 63738451998, 244332656201, 938244497740, 3608640426930, 13899977105315, 53614228550220, 207061964668740, 800639722002163, 3099251007215286, 12009598156277090, 46582685655751645, 180850428684482360
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056292 and A305750, which can be used in conjunction with the first formula.

Examples

			For a(6)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD, and AABCBD-AABCDC.
		

Crossrefs

Column 4 of A320742.
Cf. A056292 (oriented), A056354 (unoriented), A305750 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=4; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A056292(n) - A305750(n)) / 2 = A056292(n) - A056354(n) = A056354(n) - A305750(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=4 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n) + A320644(n).

A320747 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an oriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 26, 10, 1, 1, 2, 3, 7, 12, 39, 53, 20, 1, 1, 2, 3, 7, 12, 42, 103, 146, 30, 1, 1, 2, 3, 7, 12, 43, 123, 367, 369, 56, 1, 1, 2, 3, 7, 12, 43, 126, 503, 1235, 1002, 94, 1, 1, 2, 3, 7, 12, 43, 127, 539, 2008, 4439, 2685, 180, 1, 1, 2, 3, 7, 12, 43, 127, 543, 2304, 8720, 15935, 7434, 316, 1, 1, 2, 3, 7, 12, 43, 127, 544, 2356, 11023, 38365, 58509, 20441, 596, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An oriented cycle counts each chiral pair as two.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
In other words, the number of n-bead necklace structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1      1      1      1      1      1      1      1      1 ...
1   2    2     2      2      2      2      2      2      2      2      2 ...
1   2    3     3      3      3      3      3      3      3      3      3 ...
1   4    6     7      7      7      7      7      7      7      7      7 ...
1   4    9    11     12     12     12     12     12     12     12     12 ...
1   8   26    39     42     43     43     43     43     43     43     43 ...
1  10   53   103    123    126    127    127    127    127    127    127 ...
1  20  146   367    503    539    543    544    544    544    544    544 ...
1  30  369  1235   2008   2304   2356   2360   2361   2361   2361   2361 ...
1  56 1002  4439   8720  11023  11619  11697  11702  11703  11703  11703 ...
1  94 2685 15935  38365  54682  60499  61579  61684  61689  61690  61690 ...
1 180 7434 58509 173609 284071 336447 349746 351619 351766 351772 351773 ...
For T(4,2)=4, the patterns are AAAA, AAAB, AABB, and ABAB.
For T(4,3)=6, the patterns are the above four, AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152175.
For increasing k, columns converge to A084423.
Cf. A320748 (unoriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[Sum[DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j] &], {j,k-n+1}]/n, {k,15}, {n,k}] // Flatten
  • PARI
    \\ R is A152175 as square matrix
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=R(n)); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = (1/n)*Sum_{j=1..k} Sum_{d|n} phi(d)*A(d,n/d,j), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = A320748(n,k) + A320742(n,k) = 2*A320748(n,k) - A305749(n,k) = A305749(n,k) + 2*A320742(n,k).

A328743 Number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using a maximum of four different colored beads.

Original entry on oeis.org

1, 1, 0, 1, 2, 10, 26, 102, 336, 1225, 4352, 15934, 58190, 215250, 798720, 2983136, 11184128, 42109450, 159070352, 602809326, 2290640486, 8726307432, 33318502400, 127479700198, 488671717040, 1876500180280, 7217306664960, 27799998938929, 107228560958610, 414124108294450
Offset: 0

Views

Author

Andrew Howroyd, Oct 26 2019

Keywords

Comments

Permuting the colors does not change the structure.

Crossrefs

Formula

a(n) = Sum_{k=1..4} A327693(n, k) for n > 0.
a(p) = A056300(p) for prime p >= 5.
Showing 1-10 of 10 results.