A056449 a(n) = 3^floor((n+1)/2).
1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Crossrefs
Programs
-
Magma
[3^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
Mathematica
Riffle[3^Range[0, 20], 3^Range[20]] (* Harvey P. Dale, Jan 21 2015 *) Table[3^Ceiling[n/2], {n,0,40}] (* or *) LinearRecurrence[{0, 3}, {1, 3}, 40] (* Robert A. Russell, Nov 07 2018 *)
-
PARI
a(n)=3^floor((n+1)/2); \\ Joerg Arndt, Apr 23 2013
-
Python
def A056449(n): return 3**(n+1>>1) # Chai Wah Wu, Oct 28 2024
Formula
G.f.: (1 + 3*x) / (1 - 3*x^2). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = k^ceiling(n/2), where k = 3 is the number of possible colors. - Robert A. Russell, Nov 07 2018
a(n) = C(3,0)*A000007(n) + C(3,1)*A057427(n) + C(3,2)*A056453(n) + C(3,3)*A056454(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x). - Stefano Spezia, Dec 31 2022
Extensions
Edited by N. J. A. Sloane at the suggestion of Klaus Brockhaus, Jul 03 2009
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Comments