A056492 Number of periodic palindromes using exactly six different symbols.
0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 720, 7920, 15120, 103320, 191520, 1048320, 1905120, 9170280, 16435440, 72833040, 129230640, 541130040, 953029440, 3832187040, 6711344640, 26192766600, 45674188560, 174286672560, 302899156560, 1136023139160, 1969147121760
Offset: 1
Examples
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. There are 720 permutations of the six letters used in ABACDEFEDC. These 720 arrangements can be paired up with a half turn (e.g., ABACDEFEDC-EFEDCABACD) to arrive at the 360 arrangements for n=10.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (1,20,-20,-155,155,580,-580,-1044, 1044,720,-720).
Programs
-
GAP
a:=[0,0,0,0,0,0,0,0,0,360,720];; for n in [12..35] do a[n]:=a[n-1] +20*a[n-2]-20*a[n-3]-155*a[n-4]+155*a[n-5]+580*a[n-6] -580*a[n-7] -1044*a[n-8]+1044*a[n-9]+720*a[n-10]-720*a[n-11]; od; a; # Muniru A Asiru, Sep 26 2018
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(360*x^10*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)*(6*x^2-1)))); // G. C. Greubel, Oct 13 2018 -
Maple
with(combinat): a:=n->(factorial(6)/2)*(Stirling2(floor((n+1)/2),6)+Stirling2(ceil((n+1)/2),6)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
Mathematica
k = 6; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *) LinearRecurrence[{1,20,-20,-155,155,580,-580,-1044,1044,720,-720}, Join[Table[0,{9}],{360,720}],40] (* Robert A. Russell, Sep 29 2018 *)
-
PARI
a(n) = my(k=6); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
Formula
G.f.: 360*x^10*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)*(6*x^2-1)). - Colin Barker, Jul 08 2012
a(n) = (k!/2)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), with k=6 different colors used and where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, Jun 05 2018
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - 155*a(n-4) + 155*a(n-5) + 580*a(n-6) - 580*a(n-7) - 1044*a(n-8) + 1044*a(n-9) + 720*a(n-10) - 720*a(n-11). - Muniru A Asiru, Sep 26 2018