cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056570 Third power of Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
In general, cubing the terms of a Horadam sequence with signature (c,d) will result in a fourth-order recurrence with signature (c^3+2*c*d, c^4*d+3*(c*d)^2+2*d^3, -(c*d)^3-2*c*d^4, -d^6). - Gary Detlefs, Nov 12 2021
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/3,2/3)-fences and third-squares (1/3 X 1 pieces, always placed so that the shorter sides are horizontal). A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/6,1/3)-fences and (1/6,5/6)-fences. - Michael A. Allen, Jan 11 2022

Examples

			a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Cf. A346513 (first differences), A005968 (partial sums).
Third row of array A103323.

Programs

Formula

a(n) = A000045(n)^3.
G.f.: x*p(3, x)/q(3, x) with p(3, x) = Sum_{m=0..2} A056588(2, m)*x^m = 1 -2*x -x^2 and q(3, x) = Sum_{m=0..4} A055870(4, m)*x^m = 1 -3*x -6*x^2 +3*x^3 +x^4 = (1+x-x^2)*(1-4*x-x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): 1*a(n) -3*a(n-1) -6*a(n-2) +3*a(n-3) +1*a(n-4) = 0, n >= 4, a(0)=0, a(1)=a(2)=1, a(3)=2^3. See 5th row of signed Fibonomial triangle for coefficients: A055870(4, m), m=0..4
a(n) = (Fibonacci(3n) - 3(-1)^n*Fibonacci(n))/5. - Ralf Stephan, May 14 2004
a(n) and a(n+1) are found as rightmost and leftmost terms (respectively) in M^n * [1 0 0 0] where M = the 4 X 4 upper triangular Pascal's triangle matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., Ma(4) = 27, a(5) = 125. M^4 * [1 0 0 0] = [125 75 45 27]; where 75 = A066259(4) and 45 = A066258(3). The characteristic polynomial of M = x^4 - 3x^3 - 6x^2 + 3x + 1. a(n)/a(n-1) of the sequence and companions tend to 2+sqrt(5) = 4.2360679..., an eigenvalue of M and a root of the polynomial. - Gary W. Adamson, Oct 31 2004
From R. J. Mathar, Oct 16 2006: (Start)
Sum_{j=0..n} binomial(n,j)*a(j) = (2^n*A001906(n) + 3*A000045(n))/5.
Sum_{j=0..n} (-1)^j*binomial(n,j)*a(j) = ((-2)^n*A000045(n) - 3*A001906(n))/5. (End)
G.f.: x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)). - Colin Barker, Feb 28 2012
a(n) = F(n-2)*F(n+1)^2 + F(n-1)*(-1)^n. - J. M. Bergot, Mar 17 2016
a(n) = ((-3*(1/2*(-1-sqrt(5)))^n-(2-sqrt(5))^n+3*(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)) / (5*sqrt(5)). - Colin Barker, Jun 04 2016
a(n) = F(n-1)*F(n)*F(n+1) + F(n)*(-1)^(n-1). - Tony Foster III, Apr 11 2018
5*a(n) = L(2*n-1)*F(n+2) - L(2*n+1)*F(n-2) - 7*(-1)^n*F(n), where L(n) = A000032(n). - Peter Bala, Nov 12 2019
F(n+1)*F(n)*F(n-1) = 2*Sum_{j=1..n-1} P(j)*a(n-j) for n>0, where Pell number P(n) = A000129(n). - Michael A. Allen, Jan 11 2022