cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056811 Number of primes not exceeding square root of n: primepi(sqrt(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Labos Elemer, Aug 28 2000

Keywords

Comments

Number of primes among factors of LCM(1,...,n) whose exponent is > 1, i.e., number of non-unitary prime factors of LCM(1,...,n).
Number of positive integers <= n with exactly 3 divisors.
Number of squared primes not exceeding n. - Wesley Ivan Hurt, May 24 2013
Maximum number of composite numbers not exceeding n that are all coprime to each other. - Yifan Xie, Jul 07 2024

Examples

			If n=169,...,288 = p()^2,...,p(7)^2-1, then only the first 6 primes have exponents larger than 1, resulting in powers: 128, 81, 125, 49, 121, 169. So a(n)=6 for as much as 288-169+1 = 120 values of n.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[Sqrt[n]], {n, 100}] (* T. D. Noe, Mar 13 2013 *)
  • PARI
    a(n) = primepi(sqrt(n)); \\ Michel Marcus, Apr 11 2016
    
  • Python
    from math import isqrt
    from sympy import primepi
    def a(n): return primepi(isqrt(n))
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jan 19 2022

Formula

a(n) = A056170(A003418(n)) = A000720(A000196(n)).
For k = 1, 2, ..., repeat k A069482(k) (that is, prime(k+1)^2 - prime(k)^2) times, and add 0 three times at the beginning (or begin the preceding by k = 0, with prime(0) set to 1). - Jean-Christophe Hervé, Oct 30 2013
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(prime(k)^2). - Ilya Gutkovskiy, Sep 14 2019
a(n) ~ 2*n^(1/2)/log(n), by the prime number theorem. - Harry Richman, Jan 19 2022