A056856 Triangle of numbers related to rooted trees and unrooted planar trees.
1, 1, 2, 2, 9, 9, 6, 44, 96, 64, 24, 250, 875, 1250, 625, 120, 1644, 8100, 18360, 19440, 7776, 720, 12348, 79576, 252105, 420175, 352947, 117649, 5040, 104544, 840448, 3465728, 8028160, 10551296, 7340032, 2097152
Offset: 1
Examples
Triangle begins: {1}, {1, 2}, {2, 9, 9}, {6, 44, 96, 64}, {24, 250, 875, 1250, 625}, ...
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998.
Programs
-
Maple
seq(seq(coeff(product(n*x + k, k = 1..n-1), x, i), i = 0..n-1), n = 1..8); # Peter Bala, Nov 08 2015
-
Mathematica
T[n_, m_] := (n^(m-1)*Binomial[n-1, m-1]*Sum[((-1)^(n-m-k)*Binomial[n+k-1, k]*StirlingS2[n-m+k, k]*Binomial[2*n-m, n-m-k])/Binomial[n-m+k, k], {k, 0, n-m}]); Table[T[n, m], {n, 1, 8}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2017, after Vladimir Kruchinin *) T[ n_, k_] := If[ n < 1 || k < 1, 0, Coefficient[ (-1)^(n - k) Binomial[n z, n] (n - 1)!, z, k]]; (* Michael Somos, Aug 01 2019 *)
-
Maxima
T(n,m):=(n^(m-1)*binomial(n-1,m-1)*sum(((-1)^(n-m-k)*binomial(n+k-1,k)*stirling2(n-m+k,k)*binomial(2*n-m,n-m-k))/binomial(n-m+k,k),k,0,n-m)); /* Vladimir Kruchinin, Apr 05 2016 */
-
PARI
{T(n, k) = if( n < 1 || k < 1, 0, polcoeff( (-1)^(n-k) * binomial(n*x, n)*(n-1)!, k))}; /* Michael Somos, Aug 01 2019 */
Formula
Formula for row n: Sum_{k = 0..n-1} T(n,k)*y^k = Product_{k = 1..n-1} (k + n*y)
E.g.f.: A(x,t) = Sum_{n >= 1} 1/(n*t)*binomial(n*t + n - 1, n)*x^n = log(B_(t+1)(x)), where B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1, n)*x^n is Lambert's generalized binomial series - see Graham et al., Section 5.4. - Peter Bala, Nov 08 2015
T(n,m) = n^(m-1)*binomial(n-1,m-1)*Sum_{k=0..n-m} ((-1)^(n-m-k)*binomial(n+k-1,k)*stirling2(n-m+k,k)*binomial(2*n-m,n-m-k))/binomial(n-m+k,k). - Vladimir Kruchinin, Apr 05 2016
Conjecture: T(n,k) = A130534(n,k)* n^(k-1). - R. J. Mathar, Mar 31 2023
Extensions
a(29)-a(36) from Peter Bala, Nov 08 2015
Comments