A056911 Odd squarefree numbers.
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
Offset: 1
Examples
The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
Links
- Zak Seidov, Table of n, a(n) for n = 1..12000
- G. J. O. Jameson, Even and odd square-free numbers, Math. Gazette 94 (2010), 123-127; Author's copy.
Programs
-
Haskell
a056911 n = a056911_list !! (n-1) a056911_list = filter ((== 1) . a008966) [1,3..] -- Reinhard Zumkeller, Aug 27 2011
-
Magma
[n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
-
Mathematica
Select[Range[1,151,2],SquareFreeQ] (* Ant King, Mar 17 2013 *)
-
PARI
is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
-
PARI
list(lim)=my(v=List()); forsquarefree(k=1,lim\1, if(k[1]%2, listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025
Formula
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]
Comments