A057020 Numerator of (sum of divisors of n / number of divisors of n).
1, 3, 2, 7, 3, 3, 4, 15, 13, 9, 6, 14, 7, 6, 6, 31, 9, 13, 10, 7, 8, 9, 12, 15, 31, 21, 10, 28, 15, 9, 16, 21, 12, 27, 12, 91, 19, 15, 14, 45, 21, 12, 22, 14, 13, 18, 24, 62, 19, 31, 18, 49, 27, 15, 18, 15, 20, 45, 30, 14, 31, 24, 52, 127, 21, 18, 34, 21, 24, 18
Offset: 1
Examples
a(12) = 14 since the 6 factors of 12 are 1, 2, 3, 4, 6 and 12 and 1 + 2 + 3 + 4 + 6 + 12 = 28 and 28/6 = 14/3.
References
- V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- V. Arnold, Number-theoretical turbulence in Fermat-Euler arithmetics and large Young diagrams geometry statistics, Journal of Mathem. Fluid Mechanics 7 (2005), pp. S4-S50.
- Paul T. Bateman, Paul Erdős, Carl Pomerance, and Ernst G. Straus, The arithmetic mean of the divisors of an integer in Analytic Number Theory (1980), pp. 197-220.
- Marcin Mazur and Bogdan V. Petrenko, Representations of analytic functions as infinite products and their application to numerical computations, The Ramanujan Journal, Vol. 34, No. 1 (2014), pp. 129-141; arXiv preprint, arXiv:1202.1335 [math.NT], 2012.
- Daniel Sutantyo, Elementary and Analytic Methods in Number Theory, M.S. thesis (Macquarie University, 2007), chapter 3. [Wayback Machine link]
Programs
-
Haskell
import Data.Ratio ((%), numerator) a057020 n = numerator $ a000203 n % a000005 n -- Reinhard Zumkeller, Jan 06 2012
-
Maple
with(numtheory): seq(numer(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
-
Mathematica
Numerator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *) Table[Numerator[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,100}] (* Harvey P. Dale, Dec 19 2023 *)
-
PARI
a(n)=numerator(sigma(n)/numdiv(n)) \\ Charles R Greathouse IV, May 17 2012
-
SageMath
[numerator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025
Comments