cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057020 Numerator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 3, 2, 7, 3, 3, 4, 15, 13, 9, 6, 14, 7, 6, 6, 31, 9, 13, 10, 7, 8, 9, 12, 15, 31, 21, 10, 28, 15, 9, 16, 21, 12, 27, 12, 91, 19, 15, 14, 45, 21, 12, 22, 14, 13, 18, 24, 62, 19, 31, 18, 49, 27, 15, 18, 15, 20, 45, 30, 14, 31, 24, 52, 127, 21, 18, 34, 21, 24, 18
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

Numerator of arithmetic mean of the divisors of n. - Jaroslav Krizek, Apr 26 2010
The average order of a(n)/A057021(n) is asymptotic to n/sqrt(log(n)); see the Bateman et al. link or the Sutantyo link. - Charles R Greathouse IV, May 17 2012

Examples

			a(12) = 14 since the 6 factors of 12 are 1, 2, 3, 4, 6 and 12 and 1 + 2 + 3 + 4 + 6 + 12 = 28 and 28/6 = 14/3.
		

References

  • V. I. Arnold, Dynamics, Statistics, and Projective Geometry of Galois Fields, Cambridge University Press, Cambridge, 2011, p. 78.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a057020 n = numerator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Maple
    with(numtheory): seq(numer(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Numerator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
    Table[Numerator[DivisorSigma[1,n]/DivisorSigma[0,n]],{n,100}] (* Harvey P. Dale, Dec 19 2023 *)
  • PARI
    a(n)=numerator(sigma(n)/numdiv(n)) \\ Charles R Greathouse IV, May 17 2012
    
  • SageMath
    [numerator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057021(n) * A000203(n)/A000005(n) = A000203(n)/A009205(n) = (A057022(n) + A054025(n)/A000005(n)) * A057021(n).
Sum_{k=1..n} a(k)/A057021(k) ~ c * n^2 /sqrt(log(n)), where c = A308051. - Amiram Eldar, Apr 15 2025