cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057021 Denominator of (sum of divisors of n / number of divisors of n).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 3, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 7, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 21 2000

Keywords

Comments

a(n) = 1 when n is listed in A003601, a(n) > 1 when n is listed in A049642. - Alonso del Arte, Jan 31 2006
a(A069081(n)) = 2. - Bernard Schott, Sep 19 2019

Examples

			a(12)=3 since the 6 divisors of 12 are 1, 2, 3, 4, 6 and 12 and 1+2+3+4+6+12=28 and 28/6=14/3.
		

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a057021 n = denominator $ a000203 n % a000005 n
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Denominator(SumOfDivisors(n)/#Divisors(n)):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): seq(denom(sigma(n)/tau(n)), n=1..70) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Denominator[Table[(Plus @@ Divisors[n])/Length[Divisors[n]], {n, 70}]] (* Alonso del Arte, Feb 24 2006 *)
  • PARI
    a(n) = denominator(sigma(n)/numdiv(n)); \\ Michel Marcus, Apr 12 2016
    
  • SageMath
    [denominator(sigma(n, 1)/sigma(n, 0)) for n in range(1, 71)] # Stefano Spezia, Jul 18 2025

Formula

a(n) = A057020(n)*A000005(n)/A000203(n) = A000005(n)/A009205(n).