Original entry on oeis.org
1, 6, 12, 27, 39, 64, 82, 117, 141, 186, 216, 271, 307, 372, 414, 489, 537, 622, 676, 771, 831, 936, 1002, 1117, 1189, 1314, 1392, 1527, 1611, 1756, 1846, 2001, 2097, 2262, 2364, 2539, 2647, 2832, 2946, 3141, 3261, 3466, 3592, 3807, 3939, 4164, 4302, 4537
Offset: 1
-
[(5-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4 : n in [1..80]]; // Wesley Ivan Hurt, Jul 03 2016
-
A057029:=n->(5-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: seq(A057029(n), n=1..80); # Wesley Ivan Hurt, Jul 03 2016
-
Table[(5 - (-1)^n + 2 (-4 + (-1)^n) n + 8 n^2)/4, {n, 49}] (* or *)
Table[If[OddQ@ n, Binomial[2 n - 1, 2] + (n + 1)/2 , Binomial[2 n, 2] - (n - 2)/2], {n, 49}] (* or *)
Rest@ CoefficientList[Series[x (1 + 5 x + 4 x^2 + 5 x^3 + x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 49}], x] (* Michael De Vlieger, Jul 03 2016 *)
-
Vec(x*(1+5*x+4*x^2+5*x^3+x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jul 02 2016
Original entry on oeis.org
1, 3, 2, 6, 4, 5, 10, 8, 7, 9, 15, 13, 11, 12, 14, 21, 19, 17, 16, 18, 20, 28, 26, 24, 22, 23, 25, 27, 36, 34, 32, 30, 29, 31, 33, 35, 45, 43, 41, 39, 37, 38, 40, 42, 44, 55, 53, 51, 49, 47, 46, 48, 50, 52, 54, 66, 64, 62, 60, 58, 56, 57, 59, 61, 63, 65, 78, 76, 74, 72, 70, 68
Offset: 1
If viewed as a regular triangle:
1;
3, 2;
6, 4, 5;
10, 8, 7, 9;
15, 13, 11, 12, 14;
21, 19, 17, 16, 18, 20;
28, 26, 24, 22, 23, 25, 27;
36, 34, 32, 30, 29, 31, 33, 35;
45, 43, 41, 39, 37, 38, 40, 42, 44;
55, 53, 51, 49, 47, 46, 48, 50, 52, 54;
66, 64, 62, 60, 58, 56, 57, 59, 61, 63, 65;
78, 76, 74, 72, 70, 68...
-
a(n) = my(k=floor((sqrt(8*n)-1)/2)); my(m=2*(n-1)-k*(k+2)); k*(k+1)/2+abs(m)+(m<=0);
for(n=1, 32, print(n ", ", a(n))) \\ Gerhard Ramsebner, Nov 10 2024
A057027
Triangle T read by rows: row n consists of the numbers C(n,2)+1 to C(n+1,2); numbers in odd-numbered places form an increasing sequence and the others a decreasing sequence.
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 7, 10, 8, 9, 11, 15, 12, 14, 13, 16, 21, 17, 20, 18, 19, 22, 28, 23, 27, 24, 26, 25, 29, 36, 30, 35, 31, 34, 32, 33, 37, 45, 38, 44, 39, 43, 40, 42, 41, 46, 55, 47, 54, 48, 53, 49, 52, 50, 51, 56, 66, 57, 65, 58, 64, 59, 63, 60, 62, 61, 67, 78, 68, 77, 69, 76
Offset: 1
A185180
Enumeration table T(n,k) by antidiagonals. The order of the list is symmetrical movement from center to edges diagonal.
Original entry on oeis.org
1, 2, 3, 5, 4, 6, 9, 7, 8, 10, 14, 12, 11, 13, 15, 20, 18, 16, 17, 19, 21, 27, 25, 23, 22, 24, 26, 28, 35, 33, 31, 29, 30, 32, 34, 36, 44, 42, 40, 38, 37, 39, 41, 43, 45, 54, 52, 50, 48, 46, 47, 49, 51, 53, 55, 65, 63, 61, 59, 57, 56, 58, 60, 62, 64, 66, 77, 75
Offset: 1
The start of the sequence as table:
1....2....5....9...14...20...27 ...
3....4....7...12...18...25...33 ...
6....8...11...16...23...31...40 ...
10..13...17...22...29...38...48 ...
15..19...24...30...37...46...57 ...
21..26...32...39...47...56...67 ...
28..34...41...49...58...68...79 ...
...
The start of the sequence as triangle array read by rows:
1;
2, 3;
5, 4, 6;
9, 7, 8, 10;
14, 12, 11, 13, 15;
20, 18, 16, 17, 19, 21;
27, 25, 23, 22, 24, 26, 28;
. . .
Row number k (k > 1) of the triangle contains a permutation of the set of k numbers from (k^2-k+2)/2, (k^2-k+2)/2 + 1 ,...up to (k^2+k-2)/2 + 1, namely (k^2+k-2)/2, (k^2+k-2)/2 -2,...,(k^2-k+2)/2, (k^2-k+2)/2 + 2,..., (k^2+k-2)/2-1, (k^2+k-2)/2+1.
-
a[n_] := Module[{i, j, t}, i = n - t(t+1)/2; j = (t^2 + 3t + 4)/2 - n; t = Floor[(-1 + Sqrt[8n - 7])/2]; If[j <= i, (i(i+1) + (j-1)(j + 2i - 4))/2, (i(i+1) + (j-1)(j + 2i - 4))/2 + 2(j-i) - 1]];
Array[a, 68] (* Jean-François Alcover, Nov 21 2018, from Python *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
if j<=i:
m=(i*(i+1) + (j-1)*(j+2*i-4))/2
else:
m=(i*(i+1) + (j-1)*(j+2*i-4))/2 +2*(j-i)-1
Showing 1-4 of 4 results.
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula
Extensions