cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057076 A Chebyshev or generalized Fibonacci sequence.

Original entry on oeis.org

2, 11, 119, 1298, 14159, 154451, 1684802, 18378371, 200477279, 2186871698, 23855111399, 260219353691, 2838557779202, 30963916217531, 337764520613639, 3684445810532498, 40191139395243839, 438418087537149731, 4782407823513403202, 52168067971110285491, 569066339858699737199
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2002

Keywords

Comments

From Klaus Purath, Sep 25 2024: (Start)
a(n) = (t(i+3n) - t(i))/(t(i+2n) - t(i+n)) - 1 for n >= 1, where (t) is any sequence satisfying t(i) = 12t(i-1) - 12t(i-2) + t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) - t(i+n) != 0 for integer i.
a(n) = (t(i+3n) + t(i))/(t(i+2n) + t(i+n)) + 1 for i >= 0, n >= 1, where (t) is any sequence satisfying t(i) = 10t(i-1) + 10t(i-2) - t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) + t(i+n) != 0.
a(n) = (t(i-n) + t(i+n))/t(i) for i >= n >= 0, where (t) is any recurrence of the form (11,-1) including this sequence itself, as long as t(i) != 0.
a(n) = t(n) - t(n-1) = (t(n+1) - t(n-2))/12, where (t) is any third order recurrence with constant coefficients (12,-12,1) and initial values t(0) = x, t(1) = x + 2, t(2) = x + 13 for integer x.
a(n) = t(n-1) + t(n) = (t(n-2) + t(n+1))/10, where (t) is any third order recurrence with constant coefficients (10,10,-1) and initial values t(0) = x, t(1) = 2 - x, t(2) = x + 9 for integer x. (End)

Examples

			G.f. = 2 + 11*x +119*x^2 + 1298*x^3 + 14159*x^4 + 154451*x^5 + ...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 11; a[n_] := 11a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
    a[ n_] := 2 ChebyshevT[ n, 11/2]; (* Michael Somos, May 28 2014 *)
    LinearRecurrence[{11,-1},{2,11},30] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = subst( poltchebi(n), x, 11/2) * 2};
    
  • PARI
    {a(n) = 2 * poltchebyshev(n, 1, 11/2)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    Vec((2-11*x)/(1-11*x+x^2) + O(x^40)) \\ Michel Marcus, Feb 18 2016
    
  • Sage
    [lucas_number2(n,11,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008

Formula

a(n) = S(n, 11) - S(n-2, 11) = 2*T(n, 11/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 11)=A004190(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-11*x)/(1-11*x+x^2).
a(n) = ap^n + am^n, with ap := (11+sqrt(117))/2 and am := (11-sqrt(117))/2.
a(n) = sqrt(4+117*A004190(n-1)^2), n>=1.
a(n) = a(-n). - Michael Somos, Apr 25 2003
E.g.f.: 2*exp(11*x/2)*cosh(3*sqrt(13)*x/2). - Stefano Spezia, Aug 07 2024
From Klaus Purath, Sep 25 2024: (Start)
a(n) = (a(n-1)*a(n-2) + 1287)/a(n-3) for integer n.
a(n+1)^2 - a(n)*a(n+2) = -117 for integer n. (End)