cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034699 Largest prime power factor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79
Offset: 1

Views

Author

Keywords

Comments

n divides lcm(1, 2, ..., a(n)).
a(n) = A210208(n,A073093(n)) = largest term of n-th row in A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) = smallest m > 0 such that n divides A003418(m). - Thomas Ordowski, Nov 15 2013
a(n) = n when n is a prime power (A000961). - Michel Marcus, Dec 03 2013
Conjecture: For all n between two consecutive prime numbers, all a(n) are different. - I. V. Serov, Jun 19 2019
Disproved with between p=prime(574) = 4177 and prime(575) = 4201, a(4180) = a(4199) = 19. See A308752. - Michel Marcus, Jun 19 2019
Conjecture: For any N > 0, there exist numbers n and m, N < n < n+a(n) <= m, such that all n..m are composite and a(n) = a(m). - I. V. Serov, Jun 21 2019
Conjecture: For all n between two consecutive prime numbers, all (-1)^n*a(n) are different. Checked up to 5*10^7. - I. V. Serov, Jun 23 2019
Disproved: between p = prime(460269635) = 10120168277 and p = prime(460269636) = 10120168507 the numbers n = 10120168284 and m = 10120168498 form a pair such that (-1)^n*a(n) = (-1)^m*a(m) = 107. - L. Joris Perrenet, Jan 05 2020
a(n) = cardinality of smallest set on which idempotence of order n+1 (f^{n+1} = f) differs from idempotence of order e for 2 <= e <= n (see von Eitzen link for proof); derivable from A245501. - Mark Bowron, May 22 2025

Crossrefs

Programs

  • Haskell
    a034699 = last . a210208_row
    -- Reinhard Zumkeller, Mar 18 2012, Feb 14 2012
    
  • Mathematica
    f[n_] := If[n == 1, 1, Max[ #[[1]]^#[[2]] & /@ FactorInteger@n]]; Array[f, 79] (* Robert G. Wilson v, Sep 02 2006 *)
    Array[Max[Power @@@ FactorInteger@ #] &, 79] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    a(n) = if(1==n,n,my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ Charles R Greathouse IV, Nov 20 2012, check for a(1) added by Antti Karttunen, Aug 06 2018
    
  • PARI
    A034699(n) = if(1==n,n,fordiv(n, d, if(isprimepower(n/d), return(n/d)))); \\ Antti Karttunen, Aug 06 2018
    
  • Python
    from sympy import factorint
    def A034699(n): return max((p**e for p, e in factorint(n).items()), default=1) # Chai Wah Wu, Apr 17 2023

Formula

If n = p_1^e_1 *...* p_k^e_k, p_1 < ... < p_k primes, then a(n) = Max_i p_i^e_i.
a(n) = A088387(n)^A088388(n). - Antti Karttunen, Jul 22 2018
a(n) = n/A284600(n) = n - A081805(n) = A034684(n) + A100574(n). - Antti Karttunen, Aug 06 2018
a(n) = a(m) iff m = d*a(n), where d is a divisor of A038610(a(n)). - I. V. Serov, Jun 19 2019

A057108 Difference between the smallest number S(n) with S(n)! a multiple of n and the largest prime factor of n [taking a(1)=0].

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 1, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 0, 1, 5, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 7, 5, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 5, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 0, 7, 0, 5, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Aug 08 2000

Keywords

Examples

			a(12)=1 since 12 is a factor of 4!, 3 is the largest prime factor of 12 and 4-3=1
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 284-292.

Crossrefs

Programs

Formula

a(n) = A002034(n) - A006530(n).

Extensions

More terms from James Sellers, Aug 22 2000

A057111 Numbers n which are a factor of (LPP(n)-1)!, where LPP(n) is the largest prime power factor of n.

Original entry on oeis.org

8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, 49, 50, 54, 56, 63, 64, 72, 75, 80, 81, 90, 96, 98, 100, 108, 112, 120, 121, 125, 126, 128, 135, 144, 147, 150, 160, 162, 168, 169, 175, 176, 180, 189, 192, 196, 200, 208, 216, 224, 225, 240, 242, 243, 245, 250, 252
Offset: 1

Views

Author

Henry Bottomley, Aug 08 2000

Keywords

Examples

			18 is in the sequence since 9 is the largest prime power factor of 18 and 18 is a factor of (9-1)!=8!=40320=18*2240.
		

Crossrefs

Cf. A002034, A034699, A057109, A057110. Distinct from A046790 although similar initial terms.

Extensions

More terms from James Sellers, Aug 22 2000
Showing 1-3 of 3 results.