cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057147 a(n) = n times sum of digits of n.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 40, 63, 88, 115, 144, 175, 208, 243, 280, 319, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 160, 205, 252, 301, 352, 405, 460, 517, 576, 637, 250, 306, 364, 424, 486, 550, 616
Offset: 0

Views

Author

N. J. A. Sloane, Sep 13 2000

Keywords

Comments

A056992(n) = A010888(a(n)). - Reinhard Zumkeller, Mar 19 2014

Crossrefs

Iterations: A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a057147 n = a007953 n * n  -- Reinhard Zumkeller, Mar 19 2014
    
  • Maple
    for n from 0 to 150 do printf(`%d,`,n*add(convert(n, base, 10)[i], i=1..nops(convert(n,base, 10)))) od:
  • Mathematica
    Table[n*Total[IntegerDigits[n]], {n, 0, 100}]
  • PARI
    a(n) = n*sumdigits(n) \\ Franklin T. Adams-Watters, Aug 03 2014
    
  • Python
    [n*sum([int(d) for d in str(n)]) for n in range(10**5)] # Chai Wah Wu, Aug 05 2014

Formula

a(n) = n*A007953(n). - Michel Marcus, Aug 10 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=1} (x^k - x^(10^k+k) - 9*x^(10^k))/(1 - x^(10^k)). - Ilya Gutkovskiy, Mar 27 2018

Extensions

More terms from James Sellers and Larry Reeves (larryr(AT)acm.org), Sep 13 2000