cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A056992 Digital roots of square numbers A000290.

Original entry on oeis.org

1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9
Offset: 1

Views

Author

Keywords

Comments

Cyclic with a period of nine. Note that (7, 9, 4, 1, 9, 1, 4, 9, 7) is palindromic.
a(n) is also the decimal expansion of 499264730/333333333. - Enrique Pérez Herrero, Jul 28 2009
a(n) is also the digital root of A002477(n). - Enrique Pérez Herrero, Dec 20 2009
First comment above by Enrique Pérez Herrero and his formula below together give the following identity: 1+Sum_{n>=2}(1+9*((n^2-1)/9-floor((n^2-1)/9)))/10^(n-1) = 499264730/333333333 = 1.49779419149779419149779419... - Alexander R. Povolotsky, Jun 14 2012

Crossrefs

Programs

  • Haskell
    a056992 = a010888 . a000290  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    DigitalRoot[n_Integer?NonNegative] := 1 + 9*FractionalPart[(n - 1)/9] A056992[n_]:=DigitalRoot[n^2] (* Enrique Pérez Herrero, Dec 20 2009 *)
    Table[FixedPoint[Total[IntegerDigits[#]]&,n^2],{n,90}] (* Zak Seidov, Jun 13 2015 *)
    PadRight[{},120,{1,4,9,7,7,9,4,1,9}] (* Harvey P. Dale, Apr 16 2022 *)

Formula

a(n) = 1+9*{(n^2-1)/9}, where the symbol {} means fractional part. - Enrique Pérez Herrero, Dec 20 2009
a(n) = 3(1 + cos(2n*Pi/3) + cos(4n*Pi/3)) + mod(3n^4+3n^6+4n^8,9). - Ant King, Oct 07 2009
G.f.: x*(1+4*x+9*x^2+7*x^3+7*x^4+9*x^5+4*x^6+x^7+9*x^8)/((1-x)*(1+x+x^2)*(1+x^3+x^6)). - Ant King, Oct 20 2009
a(n) = A010888(A057147(n)). - Reinhard Zumkeller, Mar 19 2014

A047892 a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

2, 4, 16, 112, 448, 7168, 157696, 5361664, 166211584, 5651193856, 276908498944, 19383594926080, 1298700860047360, 79220752462888960, 6733763959345561600, 592571228422409420800, 45035413360103115980800
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

a(n) mod 9 = A010712(n-1) for n > 1. - Reinhard Zumkeller, Sep 23 2007

Crossrefs

Cf. A004207.
Cf. A007953.
Cf. A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047892 n = a047892_list !! (n-1)
    a047892_list = iterate a057147 2  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,2,20] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

Extensions

Offset changed by Reinhard Zumkeller, Mar 19 2014

A047897 a(1) = 5; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

5, 25, 175, 2275, 36400, 473200, 7571200, 166566400, 5663257600, 226530304000, 5663257600000, 226530304000000, 5663257600000000, 226530304000000000, 5663257600000000000, 226530304000000000000, 5663257600000000000000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

After a(9), every second element has the same beginning. a(11+2k) = 40 * a(10+2k) = 40 * 25 * a(9+2k).

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047897 n = a047897_list !! (n-1)
    a047897_list = iterate a057147 5  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[#*Total[IntegerDigits[#]]&,5,20] (* Harvey P. Dale, Jan 25 2014 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047900 a(1) = 8; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

8, 64, 640, 6400, 64000, 640000, 6400000, 64000000, 640000000, 6400000000, 64000000000, 640000000000, 6400000000000, 64000000000000, 640000000000000, 6400000000000000, 64000000000000000, 640000000000000000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

After the 2nd element, every element has the same beginning.
a(3+k) = 10 * a(2+k).

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047900 n = a047900_list !! (n-1)
    a047900_list = iterate a057147 8  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,8,20] (* or *) Join[{8},NestList[ 10#&,64,20]] (* Harvey P. Dale, Jul 03 2020 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047902 a(1) = 11; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

11, 22, 88, 1408, 18304, 292864, 9078784, 390387712, 15615508480, 671466864640, 38945078149120, 2375649767096320, 180549382299320320, 12638456760952422400, 960522713832384102400, 67236589968266887168000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9).

Programs

  • Haskell
    a047902 n = a047902_list !! (n-1)
    a047902_list = iterate a057147 11  -- Reinhard Zumkeller, Mar 19 2014

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047898 a(1) = 6; for n > 0, a(n+1) = a(n) * (sum of digits of a(n)).

Original entry on oeis.org

6, 36, 324, 2916, 52488, 1417176, 38263752, 1377495072, 61987278240, 3347313024960, 150629086123200, 6778308875544000, 488038239039168000, 35138753210820096000, 2213741452281666048000, 159389384564279955456000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047898 n = a047898_list !! (n-1)
    a047898_list = iterate a057147 6  -- Reinhard Zumkeller, Mar 19 2014
    
  • Mathematica
    Nest[Append[#, # Total@ IntegerDigits@ # &@ Last[#]] &, {6}, 15] (* Michael De Vlieger, Jul 08 2019 *)
  • Python
    A047898_list, l = [6], 6
    for _ in range(10**2):
        l *= sum(int(d) for d in str(l))
        A047898_list.append(l) # Chai Wah Wu, Jan 04 2015

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047899 a(1) = 7; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

7, 49, 637, 10192, 132496, 3312400, 43061200, 688979200, 33759980800, 1755519001600, 70220760064000, 2387505842176000, 138475338846208000, 9693273719234560000, 736688802661826560000, 64828614634240737280000
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047899 n = a047899_list !! (n-1)
    a047899_list = iterate a057147 7  -- Reinhard Zumkeller, Mar 19 2014

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047912 a(1) = 3; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

3, 9, 81, 729, 13122, 118098, 3188646, 114791256, 4132485216, 148769467776, 10711401679872, 578415690713088, 41645929731342336, 2998506940656648192, 296852187125008171008, 24045027157125661851648
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

Apart from the first term, the same as A047901. - R. J. Mathar, Oct 18 2008

Crossrefs

Cf. A047892 (start=2), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047912 n = a047912_list !! (n-1)
    a047912_list = iterate a057147 3  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,3,20]  (* Harvey P. Dale, Mar 21 2011 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

A047901 a(1) = 9; a(n+1) = a(n) * sum of decimal digits of a(n).

Original entry on oeis.org

9, 81, 729, 13122, 118098, 3188646, 114791256, 4132485216, 148769467776, 10711401679872, 578415690713088, 41645929731342336, 2998506940656648192, 296852187125008171008, 24045027157125661851648, 2164052444141309566648320
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Crossrefs

Cf. A047892 (start=2), A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047902 (start=11).

Programs

  • Haskell
    a047901 n = a047901_list !! (n-1)
    a047901_list = iterate a057147 9  -- Reinhard Zumkeller, Mar 19 2014
    
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,9,20] (* Harvey P. Dale, Feb 07 2022 *)
  • Python
    A047901_list, l = [9], 9
    for _ in range(10**2):
        l *= sum(int(d) for d in str(l))
        A047901_list.append(l) # Chai Wah Wu, Jan 04 2015

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A245788 n times the number of 1's in the binary expansion of n.

Original entry on oeis.org

0, 1, 2, 6, 4, 10, 12, 21, 8, 18, 20, 33, 24, 39, 42, 60, 16, 34, 36, 57, 40, 63, 66, 92, 48, 75, 78, 108, 84, 116, 120, 155, 32, 66, 68, 105, 72, 111, 114, 156, 80, 123, 126, 172, 132, 180, 184, 235, 96, 147, 150, 204, 156, 212, 216, 275, 168, 228, 232, 295, 240
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 12*x6 + 21*x^7 + 8*x^8 + 18*x^9 + ...
		

Crossrefs

Cf. A000120 (number of 1's), A057147 (decimal version).

Programs

  • Maple
    a:= n -> n * convert(convert(n,base,2),`+`):
    seq(a(n),n=0..100); # Robert Israel, Aug 01 2014
  • Mathematica
    Table[n*DigitCount[n,2,1],{n,0,100}] (* Harvey P. Dale, Dec 16 2014 *)
  • PARI
    sumbit(n) = my(r);while(n>0,r+=n%2;n\=2);r
    a(n) = n*sumbit(n)
    
  • PARI
    {a(n) = if( n<0, 0, n * sumdigits(n, 2))}; /* Michael Somos, Aug 05 2014 */ /* since version 2.6.0 */
    
  • Python
    [n*bin(n)[2:].count('1') for n in range(1000)] # Chai Wah Wu, Aug 03 2014

Formula

a(2*n) = 2*a(n).
a(2*n+1) = 2*n + 1 + (2+1/n)*a(n). - Robert Israel, Aug 01 2014
G.f.: x * (d/dx) (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
Showing 1-10 of 25 results. Next