A057175 Numbers n such that (9^n + 1)/10 is a prime.
3, 59, 223, 547, 773, 1009, 1823, 3803, 49223, 193247, 703393, 860029
Offset: 1
Keywords
Links
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit
Programs
-
Magma
[n: n in [0..800] | IsPrime((9^n + 1) div 10 )]; // Vincenzo Librandi, Aug 03 2015
-
Mathematica
lst={};Do[p=(9^n+1)/10;If[PrimeQ[p], AppendTo[lst, n]], {n, 7!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *) Select[Range[4000], PrimeQ[(9^# + 1)/10] &] (* Vincenzo Librandi, Aug 03 2015 *)
-
PARI
first(m)=my(v=vector(m));t=0;for(i=1,m,while(!isprime((9^t + 1)\10),t++);v[i]=t;t++;);v; \\ Anders Hellström, Aug 16 2015
Extensions
a(9) corresponds to a probable prime, was discovered on Oct 22 2007. Trial factored to 1E11 with Fermat base 2 primality test. - Paul Bourdelais
a(10) corresponds to a probable prime, discovered by Paul Bourdelais, Feb 01 2010
a(11) corresponds to a probable prime, discovered by Paul Bourdelais, Aug 03 2015
a(12) corresponds to a probable prime, discovered by Paul Bourdelais, Sep 23 2020
Comments